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M.J. Ablowitz

During the period of this grant the grant funds have partially supported

myself and the following individuals: Assistant Professor A.S. Fokas, Post-

doctoral Associate Y. Kodama, A. Nakamura, J. Satsuma; Research Assistant T. Taha.

The areas of study include:

a) A class of physically significant singular nonlinear integro-differential

equations. Applications include the propagation of long internal waves in stratified

fluids (with and without shear).

b) The Riemann-Hilbert boundary value problem and the Inverse Scattering

Transform method. Applications include the Intermediate Long Wave Equation and

the Benjamin-Ono Equation.

c) Direct linearizing methods for certain nonlinear wave equations and

associated nonlinear ordinary differential equations.

d) Focussing instabilities and the propagation of water waves.

e) Ordinary differential equations of Painleve type.

f) Numerical schemes for nonlinear wave equations solvable by the Inverse

Scattering Transform method.

Publications during this period were as follows:

1. Nonlinear Wave Propagation, M.J. Ab',witz, published in Encyclopedia of

Physics, pp. 663-664, 1981.

2. Remarks on Nonlinear Evolution Equations and Ordinary Differential Equations

of Painlevi Type, by M.J. Ablowitz, Proceedings of Conference on Solitons held in

Kiev, U.S.S.R., September, 1979, as part of a Joint U.S. - U.S.S.R. Academy of Sciences

agreement, Physica 30, 1 & 2, pp. 129-141, 1981.

3. Finite Perturbations and Solutions of the Korteweg-deVries Equation,

H. Airault and M.J. Ablowitz, C.R. Academy of Science, Paris, 6292, pp. 279-281, 1981.

"F . m m I..



4. The Nonlinear Intermediate Long Wave Equation: Analysis and Method of

Solution, Y. Kodama, J. Satsuma and M.J. Ablowitz, Phys. Rev. Lett., Vol. 46, 11,

pp. 687-690, 1981.

5. Linearization of the Kdv and Painlevi II equations, A.S. Fokas and

M.J. Ablowitz, Phys. Rev. Lett., Vol. 47, No. 16, pp. 1096-1100, October, 1981.

6. Perturbations of Solitons and Solitary Waves, Y. Kodama and M.J. Ablowitz,

Stud. in Appl. Math., 64, pp. 225-245, 1981.

7. The Periodic Cubic Schr6dinger Equation, Y.C. Ma and M.J. Ablowitz,

Stud. in Appl. Math., 65, pp. 113-158, 1981.

8. Remarks on Nonlinear Evolution Equations and the Inverse Scattering Transform,

M.J. Ablowitz, Nonlinear Phenomena in Physics and Biology, pp. 83-94 (Edited by

R.H. Enns, B.L. Jones, R.M. Miura and S.S. Rangnekar, Plenum Publishing Corporation 1981).

9. Direct Linearization of the Korteweg-deVries Equation, A.S. Fokas and

M.J. Ablowitz, American Institute of Physics Conference Proceedings, No. 8$,

Mathematical Methods in Hydrodynamics and Integrability in Dynamical Systems, (La Jolla

Institute 1981) pp. 237-241 (Edited by M. Tabor and Y.M. Treve).

10. A Direct Linearization Associated with the Benjamin-Ono Eluation, M.J. Ablowitz

and A.S. Fokas, American Institute of Physics Conference Proceedings, No. 88,

Mathematical Methods in Hydrodynamics and Integrability in Related Dynamical Systems,

(La Jolla Institute 1981) pp. 229-236 (Edited by M. Tabor and Y.M. Treve).

11. Note on Asymptotic Solutions of the Korteweg-deVries Equation with Solitons,

M.J. Ablowitz and Yuji Kodama, Studies in Applied Mathematics, 66, pp. 159-170 (1982).

12. Direct and Inverse Scattering Problems of Nonlinear Intermediate Long Wave

Equations, Y. Kodama, M.J. Ablowitz and J. Satsuma, J. Math. Phys., Vol. 23, No. 4,

pp. 564-576, 1982.

13. On the Periodic Intermediate Long Wave Equation, M.J. Ablowitz, A.S. Fokas,

J. Satsuma and H. Segur, J. Phys. A: Math. Gen. 15, pp. 781-786, 1982.

14. On a Unified Approach to Transformation and Elementary Solutions of Painlevi

Equations, A.S. Fokas and M.J. Ablowitz, to be published in J. Math. Phys., 1982.
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15. On the Inverse Scattering and Direct Linearizing Transforms for the

Kadomtsev-Petviashvili Equation, A.S. Fokas and M.J. Ablowitz, I.F.N.S. #9, submitted

for publication, 1982.

16. The Direct Linearizing Transform and the Benjamin-Ono Equation, M.J. Ablowitz,

A.S. Fokas and R.L. Anderson, I.F.N.S. #10, submitted for publication, 1982.

17. The Inverse Scattering Transform for the Benjamin-Ono Equation - A Pivot

to Multidimensional Problems, A.S. Fokas and M.J. Ablowitz, I.F.N.S. #11, accepted

for publication in Stud. Appl. Math., 1982.

18. On a Bicklund Transformation and Scattering Problem for the Modified

Intermediate Long Wave Equation, J. Satsuma, T.Taha and M.J. Ablowitz, I.F.N.S. #12,

submitted for publication, 1982.

19. On Analytical & Numerical Aspects of Certain Nonlinear Evolution Equations,

Part I: Analytical, I.F.N.S. #14, submitted for publication, 1982.

20. On Analytical and Numerical Aspects of Certain Nonlinear Evolution Equations,

Part 1I: Numerical, Nonlinear Schrddinger Equations, T. Taha and M.J. Ablowitz,

I.F.N.S. #15, submitted for publication, 1982.

21. On Analytical & Numerical Aspects of Certain Nonlinear Evolution Equations,

Part III: Numerical, Korteweg-deVries Equation, T. Taha and M.J. Ablowitz, I.F.N.S. #16,

submitted for publication, 1982.
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D.J. Kaup

During the past year, I have carried out research and investigations into the

following nonlinear systems and areas.

i) Stimulated Raman Scattering and two-photon absorption

(with H. Steudel),

ii) Nonlinear resonances and spherical solitons,

iii) Nonlinear interactions of Whistler Waves (with S. Antani),

iv) Exact three-dimensional solutions of the three-wave resonant interaction,

v) Discrete versions of the nonlinear Schrddinger Equation (with S. Trullinger,

USC), and

vi) Thermal effects on soliton propagation.

Publications during the last year consisted of:

1. Nonlinear Pisonance and Colliding Spherical Ion-Acoustic Solitons

(Physica 2D, 389-394 (1981).

2. Multi-Shock Solutions of Random Phase Three-Wave Interactions, A. Reiman

and D.J. Kaup, Phys. Fluids 24, 228-32 (1981).

3. The Solutions of the General Initial Value Problem for the Full Three

Dimensional Three-Wave Resonant Interaction, D.J. Kaup, Physica 3D, 374-95 (1981).

4. The Lump Solutions and the Bicklund Transformation for the Three-Dimensional

Three-Wave Resonant Interaction, J. Math. Phys. 22, 1176-1181 (1981).

5. Whistler Wave Self-Modulation in a Tokamak Plasma, D.J. Kaup and S.N. Antani,

Phys. Fluids 24, pp. 1391-3 July (1981).

6. The Linearity of Nonlinear 'Olitcn Equations and the Three-Wave Resonance

Interaction, article in Nonlinear Phenomena in Physics and Biology, pp. 95-123,

Ed. by Enns, Jones, Miura, and Rangnekar (Plenum, 1981).

7. The Method of Estabrook and Wahlquist, article in Mathematical Methods in

Hydrodynamics and Integrability in Dynamical Systems, pp. 193-210, edited by

M. Tabor and Y.M. Treve (Am. Inst. Physics, New York, 1982).



A.C. Newell

In the past two years this investigator has been involved in a number of studies

falling under the general heading of Nonlinear Processes.

1. Soliton Mathematics: (With H. Flaschka)

In these studies our goal has been to understand the interconnections

between soliton mathematics and solvable models in statistical mechanics and quantum

Yield theory. Out of this study has come a number of papers, reprints of which are

enclosed or listed.

1.1 Monodromy - and Spectrum-Preserving Deformations I, H. Flaschka and

A.C. Newell, Commun.math.Phys. 76,65-116 (1980).

1.2 The Inverse Monodromy Transform Is A Canonical Transformation, H. Flaschka

and A.C. Newell.

1.3 Multiphase Similarity Solutions of Integrable Evolution Equations,

H. Flaschka and A.C. Newell, Physica 3D 1 & 2, pp. 203-221 (1981).

1.4 A series of 6 papers - Kac Moody algebras and soliton equations.

2. Propagation of solitary surface and internal waves in slowly varying depths:

(With C.J. Knickerbocker)

This turned out to be an exciting study in which we answered many open

questions.

2.1 Shelves and the Korteweg-deVries Equation, C.J. Knickerbocker and A.C. Newell,

J. Fluid Mech. Vol. 98, pp. 803-818 (1980).

2.2 Internal Solitary Waves Near A Turning Point, C.J. Knickerbocker and

A.C. Newell, Physics Letters, Vol. 75A, No. #5, PP. 326-330 (1980).

2.3 Reflections from Solitary Waves in Nonuniform Media, C.J. Knickerbocker

and A.C. Newell.
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3. The Phenomenon of Self-Focusing as a Mechanism for Initiating Subcritical

Instabilities.

The basic idea here is that focusing is a dynamic mechanism by which a

system can reach its finite amplitude instability threshold locally without benefit

of large initial perturbations or the effects of imperfections.

3.1 Bifurcation and Nonlinear, A.C. Newell, from Pattern Formation and

Recognition, Ed. H. Haken, Springer (1979).

3.2 The Mechanism by Which Many Partial Difference Equations Destabilize,

W. Briggs, A.C. Newell and T. Sarie, from Chaos and Order in Nature,

Ed. H. Haken, Springer (1981).

3.3 Focusing: A Mechanism for Instability on Nonlinear Finite Difference

Equations, W.L. Briggs, A.C. Newell and T. Sarie (1982).

4. Chaos in Partial Differential Equations

We seek to determine what significant new qualitative features appear when

one forces mechanical systems described by POE's into the chaotic regime.

4.1 Chaos in the Inhomogeneously Driven Sine-Gordon Equation, J.C. Eilbeck,

P.L. Lomdahl and A.C. Newell, Physics Letters, Vol. #87A, No. 1,2, pp. 1-4

(1981).
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Nonlinear Wave Propagation 663

and above 8 kpz.) More elaborate instru- intensi y and duration or the not. whether this is merely
les portable. a widely used for analysis of annoyt g or has more seriou ons quences is no( yet es-
yre. fractiona ocve. or narrow frequency tablish except in extrem ases.
re detailed inl'ornr ion is usually required for

nr ngineering con I of noise at the source. See al ACOUSTICS: OUSTICS. ARCHITECTURAL.
ly for regulatory p u s.:scribe the varying n isc levcls that constitute BIBU GRAPtY
te at a given location instruments have been L. ~ ~ ~ ~ I LItak(e..eieadVbahnCnrl rwHill.

imple the noise level usually A-weighted) at L. r ranek ied.)., t rrd Cmrll.
N, w York. I9.

of time. In this way t statistical descripors . .nid. nd d. McGrw-
I. indicating the noise I vel L decibels tlt is H 1. New Y rk. 1979. Mwrcent of the time. ;# L 3a+I . are L.e n E. NwY6k 99 1nfroften takn to E. nsler A. R. Frey. Funime uis of A cosfics. 2nd ed.
.ximum noise levels occ ionally attain .and W ley. N w York. 1%2. (E)
imbient noise level. P.M. o and K. U. Ingard. Theoreticul Acoustics. McGraw-
table device is the noise ose meter. on by Hill. ew York. 1968. (
ng in noisy locations. s instrume t sums
sure of the wearer. takin into acc nt both Nonlinear Wave Propagation
ime of exposure and the a ise leve Mark J. Ablowitz
)ic control procedure is t enclos the noise
:ompletely or partially. taki g ce in precau- Wave propagation is essentially the study of how infor-
ig the absorption o" sound. t ou this is often mation. or some type of signal. is transmintutd. "'he generality
I solution for a variety of re s. Noise re- in the notion of what actually constitutes a wave. or wave
Jesign of the source usually r uires expert phenomena. necessarily makes the stutly rather broad and
what mechanisms are prod ng the noise, of interest to scientists and mathematicians alike. Applica-
ared. how this can be reduc (many noise tions abound: for example. water waves, acoustic waves.
ques are specific to certain rocesses). and laser beams, traffic flow, and electromagnetic waves. Here
onacoustical constraints suc weight, cost, we discuss some of the mathematical theories and techniques
equirements. etc. Once no scapes the vi- that have been developed for nonlinear waves. By nonlinear
3urce the intensity and spe t shape of that wave propagation we refer to those phenomena whose un-

the receiver depends on e ssibte propa- derlying equations (and hence the basic physical mechanism)
Inside a building noise y be ther airborne is nonlinear.
>rne, and the noise level pend on numerous The discipline of nonlinear wave propagation began. in the
is the shape and size o rooms. hether they nineteenth century with the examination of surface waves .
3t or absorbing. how t ion is distrib- by Stokes (1847).. For deep-water gravity waves, he round
iency of vibrationi tion in so id structures, that the phase speed of the wave was amplitude dependent. -
the noise level at th receiver d pends on the The larger the amplitude, the faster the wave train moves. .V
nedance of the gro surface, hether or not Thus, if we call c the phase velocity. k the wave number.
height of the so e and recei er above the and a the amplitude. Stokes found that c-c(k~a). In linear

their distance a . Wind vel ity and tern- problems, c-c(k) only. This concept has been used quite
their vaiaion wi height. and so molecular recently and will be discussed later in this article.

re all important distances of order of 100 At approximately the same time. Riemann was also study-
ater. ing nonlinear wave phenomena. In fact. in his classic paper

: of noise on hu n activity ae xtensive. De- (183) on gas dynamics, he discovered a method to solve a
s frequency c tent, intensity, ime duration, certain system of nonlinear partial differential equations
inces under wlh it is heard. se can be ben- (PDE's). The ideas have been generalized, and new methods

r masking sons of high meS e content that developed for a class of equations called hyperbxlic systems.
wise be dit ti=n-annoying. or hazardous. These are PDE's that have distinct real characteristics. A
noying effect are interference ith speech and discussion of these ideas can be found in Courant and Fried-
nce of menta tasks. and de tion of the en- richs (1948) and Courant and Hilbert 1961). Perhaps thc
the listener In most circu es psycho- most outstanding new phenomenon of this nonlinear theory

on to noise i renses with inc asing amounts is the appearance of a shock wave. A shock is the abrupt
there is cons erable variabilit among individ- change in the dependent variables) of the underlying equa-

ring on past perience, the nat re of the noise. tion(s). In gas dynamics these variables are the pressure and
ion of quietening it. Long or ted exposure the velocity.
i of noise presents a risk of i no damage: the In recent years there have been significant advances in the
nap and its effect on hearing depend in a com- solution of nonlinear dispersive wave problems. By this we
duratio, in.ermittency. frequency content. and mean those equations that. when linearized, have the phase
d also on the physiological susceptibility of the speed depending nontrivially on k: i.e.. c-1k). The first
4oise disturbs sleep, either by awakening or by important step was the understanding of the effects of non;
Jiph of sleep. to an extent that depends on the linearity on wave interactions. These ideas are often called



* weak interaction theory, because here the nonlinearity is fimal velocity, after interaction, are equal! They named this
assumed to be small. Very generally. we consider an equa- solitary wave a soliwn. in conceptual analogy to elementary-
tion of the form particle interactions. Indeed, in 1975. some physicists sug-

Lt) - 4tN(u) (1) sested that an elementary particle is actually a soliton.
This result shortly preceded the pioneering work of Gard-

where a is very small, and L and N are linear and nonlinear ner. Greene. Kruskal. and Miura IGGKM) (1967. 1974) in
operators. respectively, that depend on the particular phys- which they developed a method to solve the initiai-value
ical problem. Equation (I) is assumed to have elementary problem for (2). for given idx.0) decaying sufficiently rapidly
dispersive wave solutions u,-Acos8,. ,inkx-u(k,)t as I x.-. The key step is to associate with the KdV equation
(assuming one spatial dimension and time) in the linear limit the linear Schrodinger eigenvalue problem
e-0. lk,) is called the dispersion relation and is related to
phase speed by cwwl,. These soutions do not obey the V,, (k uix.t)V-0. 14)
full equation (i. However. approximate solutions can be Remarkably. Eq. (4) had been ,tudied intensively by theo-
constructed by using multiple-scale perturbation methods retical physicists in the 1950s. By using concepts and meth-
(see, e.g.. Cole. 1%8). It turns out that. in general. the non- ds of direct and inverse scattering (see. e.g.. Faddeev. 1%3)
linearity creates resonant interactions between the solutions GGKM found that the solution of (2) obeyed the linear Gel-
m,. This in cun causes the amplitudes A, to depend weakly fand-Levitan (1951) integral equation.
on time (typically ,- A,(u)). The effect-can be substantial. Previous to KdV. Hopf (1950) and Cole (1951) showed.
A mode that initially is absent can "feed" off the others. the Burgers (1948) equation
and eventually become equally important. References re-
garding this work may be found in Phillips (1974) and Bloem- , tlu , - Ii,,
bergen (1965). could be reduced to the solution of the linear heat equx

In 19%5 Whitham discovered how to develop certain types by using the transformation V, = u V. Although (4) is. in s

of approximate solutions to fully nonlinear partial differential sense, a generalization of this, the implicit nature and
equations. The starting point is that for certain equations a "inverse" concepts are quite novel.
single periodic uniform nonlinear "mode" is an exact so- The work of Zakharov and Shabat (1971) showed that the
lution. e.g.. the Stokes water-wave solution. Whitham methods of KdV were applicable to still another physically
showed how to generate simplified approximate equations relevant evolution equation. Subsequently. Ablowitz. Kaup.
that govern gradually modulated nonuniform waves (e.g.. Newell, and Segur (1974) developed a technique by which
a wave in a slowly varying medium). The methods can be a class of nonlinear evolution equations can be isolated and
viewed as a generalization of the WKB method to nonlinear solved.
partial differential equations. and can be put into an elegant It is significant that many of the equations solvable .by
variational formulation. The theory provides information as these techniques are applicable to a wide variety ofphysical
to how energy propagates. and gives a concept of group problems and can be derived in a rather general setting (see.
velocity in a nonlinear problem. In the linear theory, the e.g. Benney and Newell. 197). The general ideas have stim-
group velocity is the velocity at which energy is transferred ulated work in a great many new directions. Numerous pa-
The nonlinearity has the effect of splitting the Whitham's pers on these subjects can be found in the current literature.
velocity into more than one vulocity. Although the linear
theory was arUpied only to a ,insle-pham (6 /&Tr- 4W) mode.
the ideas can be extended to multipha.w modes., as noted by See also Olv'ics. NoNINLtAK WAVUES.

Ablowitz and Benney (1970).
The foregoing theories have led to important new discov- REFERENCES

eries. One of the most famous is the work of Benjamin(1%7).
He showed, by using weak interaction theory (the result can M. J. Ablowitz and D. J. Senney. Stud. bs Appl. Math. 49, =5
also be deduced using Whitham's technique), that the Stokes (1970). (A)M. J. AbiOwitZ. D% J. Kaup, A. C. Newell. and H. Segur. Sind. in
water wave was unstable. This surprising fact (and the very API. Math. 3 u 2, AC974). (A)
nature of the instability) has stimulated a great deal of re- T. Bi. enjathi. P5,. Ro. Si%./)dA m A M )9 A1967). (A)
search. D. J. Beney and A. C. Newcll, J. Math. Phys. IN.).) 46. 133

At approximately the same time. Kruskal and Zabusky (1967). (A)
were studying special aperiodic solitary-wave solutions of N. Bloembersen. NonlinearOptic's. Benjamin. New York. 1965. II)
the physically interesting Korteweg-de Vries (KdV) equa- J. M. Burgers. Adv. Appl. Mech. I. 171 (1948). (A)
tion (195). J. 0. Cole. Q. Appi. Muath. 9. 225 1951). (A)

J. D. Cole. Perturbation Med4s in Applied Mathematics. Blaisdell.H,+em,+la,,0.(2) Boston. 1969. (1)

A solitnry-wave solution to (2) is given by R. Coumant and K. 0. Friedrichs. Spers,,ic Flow and Shm'k
Waves. Wiley Ulntersciencel, New York. 1948. (11

t - A sech-(VZ'(x - .AM) (3) R. Coumnt and D. Hilbert. Matelhad. soMitlhernuticl l'yi'.ics. Vol.
I1. Wiley (Interscience). New York. 961. (AiThey discovered the n.emarkahle fact that two such waves L. Pnddeev. J. Math. Phv.. 7. r (9A3. (A)

with different amplkudes interact easically. Spe.irwally. C. Gardner. J. Greene. M. U. Kruskal. n It. Miur. Phs. Rer.
the initial velocity, before interaction, and the asymptotic Let. 19, 1095 (1%7). (A)

ii



Nuclear Fission 665

C. Gardner. J. Greene. M. D. Kruskal. and R. Miura. Commun. time, this large energy release, together with the emission
Pure Appl. Math.. 27 97 (1974). (A) of neutrons and gamma rays, was thought to indicate that

I. M. Gel'fand and B. M. Levitan. Am. Math. Trans. (2). I, 253 nuclear fission was a complex, high-energy process no( per-
(1951). (A) mitting of nuclear-structure considerations and analysis.

E. Hopf. Comm. Pure Appl. Math. 3, 201 (1950). (A) Evidence accumulated through many years of research.
D. J. Koriewe$ and G. deV"ics. Phil. Max. 39, 422 (1895). (A) however, indicates that the principal features of the fission
0. M. Phillips. Ann. Rer. Fluid Meek. 6, 9 (1974). (1) process can reasonably be understood in phenomenological
G G. siokem . Camnb. Trans. , 441 1847). (A) terms and that i! is perhaps surprisingly amenable to analyses
G. B. Whitham. Proc. Roy. Soc. London A2111, 238 (1965a). (A) born in more conventional theoretical nuclear studies. e.g..
G. B. Whitham. J. Fluid Meek. , 213 (1965b). (A) shell-model and collective-model studies. Having aid this.

G. B. Whitham. Nonlinear Wares. Wiley (lmnrsciiceh. New York. however, we must immediately point out that the nuclear
Iu74. it) many-body problem presented by the phenomenon of fission

N.J. Zabusky and M. D. Krskal.Phys. Re'. Ltt. 15, 24011965). I) is enormously complex and remains far from being solved:
V. E. 7akharov and A. B. Shabat.Zh. Ek.p. Teor. Fiz. 61118(1971) even the analyses based on more conventional nuclear

1, 'ier Phys. JETP 34, 62 11972)1. (A) model's are often highly complex indeed.
Consider first the nuclear fission reaction induced when

Nuclear Emissions see Angular Correlation of Nuclear a thermal neutron (0.025.eV) is incident on a "'U nucleus.
Radiation i.e.. , (This reaction has perhaps been the subject

of more study than any other fission reaction.) The corn-

Nudear Fision pound nucleus -U is formed in an excited state with ex-
citation energy E*u6.5 MeV. As the compound nucleus be-

Harold W. Schmitt* gins to fission, this excitation energy transforms into
deformation, and a sequence of shapes such as those shown
in Fig. I may ensue. At the "scission point." i.e. the point

I. INTRODUCTION o" separation, the product nuclei (often called "'fission frag-

The subject of nuclear fission, as a subfield of nuclear ments" or "fission products") are free to accelerate by mu-
physics, is perhaps unique in that its importance is founded tual Coulomb repulsion. It is this Coulomb potential energy.
in both practical and research considerations, On the prac- and its subsequent transformation into fragment kinetic en-
tical side. the large energy release from fission, coupled with ergy which accounts for most (80 to 90%) of the energy
the emission of neutrons and the consequent possibility of released in fission. The slowing down ,nd ionization of these
sustaining a controlled chain reaction. as in nuclear fission high-energy fragment nuclei by atomic processes in the sur-
r.zactors. provides a source of energy applicable to the rounding medium produces the heat which can then be used
world's energy needs. In research. the phenomenon of nu- as a useful energy source in nuclear reactors.
clear fission is a fascinating physical process worthy of study The two fragment nuclei are produced in deformed excited
and understanding in its own right. In addition, the increased states and decay by neutron and gamma-ray emission. An

capabilities of existing and new accelerators have opened average of 2.42 neutrons is produced in the "U(i,,.J) re-

the previously inaccessible field of heavy-ion physics; ac- action: in a reactor using !"U as fuel it is these neutrons
celeration of heavy ions to energies above the Coulomb bar-
ner permits qualitatively new studies of reactions between
heavy nuclei. Importantly. heavy-ion reactions cannot be 20 1 1 1 , -----

regarded as "fission in reverse"; nevertheless, many theo- 26 u
retical considerations are common to both subjects, and IS -
many of the experimental methods and techniques used in
nuclear fission research are directly applicable in heavy-ion o -L, -- " -
research.

In this short ireatment. we can only describe the quali- -. ',, ,
tative aspects of fission and the nature of present-day un- / " " .- "
derstanding of the fission process. The interested reader is F//' '' \k
referred to the appended list'of selected readingp for further 0 !j(CA . A/
information and study. : .,

II. ENERGY RELEASE IN FISSION-DIVISION OF A
HEAVY NUCLEUS 0 I . I

-20 -S -0 -5 o ,o 6 2
The division of a heavy nucleus. e.g.. uranium. plutonium. LGTM t(in)

etc.. into two fragmen nuclei is accompanied by large energy FIG. I. A possible sequence of ihapgs of a fissioning nucleus. In
release fabout 200 million electron volts (MeV)I. At one the inset, points corresponding to these shapes are shown iche-

matically on (he minimum pmential-enerSy curve (Section IVi.
Edisa,'smse: Thisartic ewas preparedbytheaulhorand accepted IReproduced. with permission. from the second Rem in Part D of

for publicaon in 1977. th Bibliopmphy.l
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ORDINARY DIFFERENTIAL EQUATIONS OF PAINLEVE TYPE

Mark J. Ablowitz

Mathematics and Computer Sciences
Clarkson College
Potsdam, New York

U.S.A.

Recent work on i) Painlevd equations and their
relationship to nonlinear evolution equations
solvable by inverse scattering and (ii) new
results on an evolution equation describing long
waves in a stratified fluid are discussed.

In these proceedings : will review some of the recent worc done by
Ramani, Sequr and myself on the deep and important relationship be-
tween nonlinear evolution equations solvable by Inverse Scattering
and ordinary differential equations (O.D.E.'s) of Painlevd type. In
addition I will briefly discuss some recent work done by Satsuma,
Kodama and myself on certain equations arising in the propagation of
long waves in stratified fluids.

I begin with a brief discussion of O.D.E.'s and their sinularities. I
I will classify the singularities of an O.D.E. into two main types
i) fixed singular points and (ii) movable singular points. In

class (i) the location of the singularities (in the complex plane)
of the equation are fixed by the equation. Specifically the location
of the fixed singularities depend on the location of the singular-
ities of the coefficients in the equation, and locations where the
coefficients of the highest derivatives vanish. For example

z2w' + w - o (la)
has the solution

w - C exp (l/Z) (ib)

where C is an arbitrary constant. Here z = o is a fixed singular
point (essential). Another such example is the linear, second order
O.D.E.

wo + p(z) w, + q(z)w a o (2a)
- The location of the singularities of (2a) depend only on p(z), q(z).

Specificially the solution
w = C 1 (z) C2w2(z) (2b)

in such that the singularities in w(z) do not depend on the con-
stants of integration C ,C2. This is an example of the general
statement: the locatio of the singularities of any linear O.D.E.
are fixed. Singularities in class (ii) do not have this property.
Namely the location of their singularities depend on the constants
of integration. This may occur for nonlinear O.D.E.'s, and it is
generic to them. So, for example the equation

w' + w 2  o, (3a)
has the solution
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i (3b)

where zo is a constant of integration. This singularity, a pole, is
movable because its location depends on the constant of integration
(i.e. initial values) zo.

In what follows, we shall refer to a critical point as either a
branch point or an essential singularity.

I shall now turn to the classical results on the question of which
O.D.E. 's have no movable critical points.

The first equation (a review of this and the further work done by
Painlev6 and his coworkers which I will discuss below appears in
Inca [11) to be considered is the first order nonlinear O.D.E.

w, - F(w,z) (4)

where F is rational in w, and locally analytic in z. It was found
(Fuchs 11884) - see 111) that the only such equation without movable
critical points is the generalized Riccati Equation.

w' - P (z) + P1 (z)w + P2 (z)w
2 ()

Undoubtedly familiar with this result, Kovalevskya (1888) made the
next significant advance. Indeed she was awarded the Bordin Prize
for her major contribution to the' theory of the motion of a rigid
body about a fixed point. Her main idea was to carry out the ap-
parently nonphysical calculation of determining the choices of para-
meters for which the equations of motion admitted no movable criti-
cal points. In all such cases she then solved the equations explic-
itly. In all other cases the solution is still unknown (for a dis-
cussion of this work the reader is recommended to consult (21).

Shortly thereafter Painlev6 and his coworkers examined the second
order equation

w" - F(w',w,z) (6)

where F is rational in w ,w and locally analytic in z. They showed
that out of all the possible equations of the form (6) there are
only 50 canonical equations with the property of having no movable
critical points. Hereafter, we shall refer to any equation possess-
ing this property as being of P (P for Painlevd). Of these
equations all may be reduced to either an equation already solved or
to six new transcendental functions; i.e. the six Painlev4 transcend-
ants. The first two are

w" - 6w2 + Z, (P1)
wO -zw + 2w3 + 0. (P 1)

The other four are listed in (11.

The question of whether an O.D.E. is of Painlev4 type can be asked
of an equation of any order. However, extensive results are known
only for O.D.E.'s of first and second order. At higher orders it is
straightforward to examine the equation for movable algebraic singu-
larities. Essential singularities are more difficult to handle.
Such a method was used by Kovalevskya [21, and Painlev6 (his so-
called a method (11). For example

w" - zmw 2w3  (7)

By a simple balance we see that the dominant term of an algebraic
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singularity to (7) has structure w N t 1/(z-zo). Take the + root,
call &-z-zO and look for a solution w - l/ +0(). o Then satisfies
" 6 z m-2 Zo 2 1 6 2 (

0 0 2Asuin'( m -a + 'a 1  'a 4 (, ._.. a m.. o 8

Assuming P{ =ao + aI C + a2 2 + a3C 3  ... , we find ao0, a -zo/6,

M13 m-2a2 M z0 1/4 and at order C . 0-0.a 3anm(m-l)z-0  . If m#0,l then log

terms must be inserted into the above expansion i.e.

M- a + a& a2 &2  + (b3& 3log& + &3) +.30 1[ 2 a°  3 ..

and the equation is not of P type. When m - o,l we have satisfied
the necessary conditions and indeed Painlev4 has proven that the
equations have no movable critical points. In this way we can, in
principle, test an O.D.E. to see whether it satisfies necessary con-
ditions to be of Pairlevd type. The above procedure is more exten-
sively considered in (3].

Next we mention that there is a connection between O.D.E.'s of P-
type and nonlinear evolution equations solvable by inverse scatter-
ing (I.S.T.). Namely, we have found that similarity reductions of
such evolution equations are of P-type. For example the modified
Korteweg deVries (mKdV| equation

Vt- 6v2 Vx + 0 (9)

has a self-similar solution of the form
v - w(z)/(3t) z x/(3t) 1 3

Substituting this into (9) shows that w(z) satisfies P 1 (see also
ref. (4]).

For our purposes we consider an evolution equation to be solvable by
I.S.T. if the following holds. Consider a linear integral equation
of Gel'fand-Levitan'Marchenko type:

K(x,y~t) - P(x,y;t) +X X K(x,z;t) N(x,zy;t)dz. (10)
Jx

The cases of interest have N(x,z,y;t) related to F in some definite
way, e.g.

N M F(z,y;t)

N M fx F(xs;t) F(s,y;t)ds
etc.

By requiring F(x,y;t) to satisfy certain linear equations, say
LFi=0, il,2 we may establish equations which K(x,y,t) must satisfy
(see, for example (5]). Using these results K(x,y,t) may be shown
in every concrete example to satisfy an equation. L2K(x,y;t) ft
L K(x,y;t) where E depends on K(x,x;t). Along the line y-x we have
a nonlinear evolution equation. The example of mKdV is detailed in
ref. [6].

With the above we have a notion of when an evolution is in the I.S.T.
class. We have considered many examples of equations in the I.S.T.
class and similarity reductions of such equations. By applying the
expansion procedure described above we have found that each O.D.E.
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satisfies necessary conditions to be of P-type. On the basis of our
results we have formulated the following Conjecture (7].

Cons de a nonlinear P.D.E. in the I.S.T. class. Then every O.D.E.
obtai~ned by an exact reduction of the nonlinear P-M.D. is of P-ty.

Apart from mKdV, we have considered similarity reductions of KdV,
certain higher order KdV equations, Soussinesq (relates to P ), de-
rivative nonlinear Sch~dinqer (relates to PIV), Sine Gordon (related
to PiyZ- and we Caution that a transformation is necessary here) etc.
All o~ these equations have similarity reductions which are of P-
type.

If an evolution equation reduces to an O.D.E. that is not of P-type
then we do not expect it to be solved by I.S.T. Using the singular-
ity analysis described above we have examined the similarity solu-
tions of some evolution equations for which numerical or other evi-
dence shows that solitary waves do not interact as solitons:

(a) "Cubic" nonlinear KdV: u, + 6u 3, 14 + -xx 0,

where u - v(z)/(3t)2 , z - x/(3t)1/
(b) double Sine-Gordon: u sin u + X sin 2u,

X 0, .W(z) - exp (iu (z)l Z . xt,

(c) Equat:.on of spherical Self-focussing

t rr r r

(d) Fish~er's equation ut a u(l-u) + u

where u - w (z) , z - x-ct.

In all cases except (d) when c-c0  S/ 5/9-, or c 0we find that
the resulting O.D.E. is not of P-type. We therefore conjectured that
none of these evolution equations are solvable by I.S.T. In the
special cases c-c , c-0O of (d) th~e equation is of Painlavd Type.
Moreover the solugions can be found in closed form (apparently these
are the only such solutions known IS]).

It should also be noted that in those cases where the kernel
N(x,z,y;t) in (l0t. decays rapidly enough su h that IN(x'z'y)IiS M(x,
y)]<-s for all z, I b(x,y)dy -T(x)<- and " F(x,z)M(x,z)dz<es

then (10) has a unique solution (Fredhoim Theory) which is given by

K(x,z~t) - F(x,y;t) + X J" F(x,zut)7L(x,z,y;t)dx (11)

7E(x,zY;t) - Ci~gvt (12)

Hence C and D are nontrivial entire functions of X which are given
as absolutely convergent series. In important subclasses where
P(x,yitlis analytic in its arguments and rapidly decreasing then C,D
are analytic in each of their arguments. Hence the only singular-
ities of K come from the zeros of D(x;t) and as a function of x can
only be poles. With certain modifications, this argument can be ex-
tended to cases in which F has fixed singularities. This than shows
that any solution arising from such a linear integral equation
(11) cannot have movable critical points Ii.e. this solution branch

7,77""
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has the Painlevi property - see ref (31).

Not only does the argument following (11) work for evolution equa-
tions, it also holds directly for those O.D.E.'s obtained from an
evolution equation in the I.S.T. class. For example if we take the
kernel in (11): N to be:

N(x,z,y) -fF(x,z) F(z,y)dz
x

and require LiF(x,y)-O,-1l,2 wheze

L x-3 y (13a)

L2  (x+ay) 2
- 0iX1 (13b)

then a solution F(x,y)-F(z), z+x+y satisfies,
F z Fao (13c)

with a decaying solution

F(z) - roAi(A). (13d)

in (61, (71 it is shown by direct a-plication of these L., i-1,2 on
(11) with this kernel, that we may solve for a one paramiter family
of solutions of P11 with aL-o. Namely, solve for K(x,y), y>x:

K(x,y)- r0 A (X+Y) -(.% ~ K(x,z) A~(.! A (3iX) dzds-o (14a)
x

then w(x) a K(x,x satisfies
wo - Xw + 2w3  (14b)

with w ". ro Ai (x) as x - + -.

If Irol < I it may be proved [61 that a solution exists for all x,
whereas for 1r01 > I we have a pole for finite x. Ir 01-1 is the

"critical" branch. In these proceedings Segur will discuss how we
may use the asymptotics (t-) of the mKdV equation to determine the
so called connection formula in the case Ir0 1 < 1 i.e.

As x-, for Ir 0 1

w a, 0 sin(. (-x) 2.. d2 log(-x) + eo ) (15a)
(-x) 0 0

whered - - log (1-r2) and

aoM - arg r(l-i--- do 3 l - arg r0
(r0 real). If Ir01 - 1, then as x . - a

w I% siqn(r o ) (y ) 1/2 (15b)
and if I:ol > 1

w % sign (ro ) (x -xo(ro))l (15c)

as x * xo(ro).
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It should be stressed, however, that this theory goes much deeper
and far beyond the case of PIT. It allows us to linearize and ob-

taih global information for many nonlinear O.D.E.'s resulting from
evolution equations in the I.S.T. class. Whereas certain of these
O.D.E.'s are the classical Painlev transcendents (e.g. special
cases of Pill PIII, PIV etc.), others are higher order nonlinear

O.D..1 (e.g. similarity forms of the higher KdV, nKdV flows). More-
over the deep connection between evolution equations in the I.S.T.
class and O.D.E.'s of P-type give us an apriori test as to whether
an evolution equation can, in fact, be solvable by I.S.T.

As a final comment about these nonlinear O.D.E.'s it should be noted
that there are methods by which we can give exact representations to
"perturbations" from solutions. Namely if w(z) satisfies some non-
linear O.D.E. solvable in the above manner, and w (z) represents a
special solution, then v(z) via

w(z) = w0 (z) + v(z):

can also be represented by a linear integral equation. For conven-
ience let's consider the KdV equation

u, -6uu x + uxxx  0. (16)

A similarity solution is of the form
u - w(z)/(3t) 2 3 , z x/(3t)

Substituting this into (16) we have
wl - 6ww' - (2w zw') = o (17)

(17) has a claw of special solutions given byd2!
We(z) = -2 d log en(z) (18)

0 1, 6 Z, 02  Z3  4,

(see for example [91). There is a recursion relation for the high-
er e.

en+l an-l - On+l an-l = (2n-l) 2 "
n

With a method similar to that used, (for example) in ref. [10] we
may establish linear integral equations for the perturbation v(z)
(above) from wo (z).

In the case w (W) - 0 (91 1 1) we have the standard Gel'fand Levitan
Marchenko equation

K(x,y) + ro Ai( +) + r°  K(x,z) Ai (jX )dz - o

w(x) - -2 a K(x,x) % -2 ro AI(xl, (19)
x.a

where w(x) satisfies (17) directly. For el - x we have

w(x) 2 + v(x) (20)
x

where v(x) is obtained via:

- .it;.
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!(x,y) + r€ G(x,y) + ro  K K(xz) G(z,y)dz - 0,

G(xy) - 7f-7 (1.-) (1'2) *ik(x+y)/2+ik3/
3 dk

v(x) - -2i K(x,x) (21)

Hence G(x,y) is a generalization of the Airy function in (19)

Ai(x) - I ikx+ik 3/3dk"

Higher order N(Gn(x)) may be done analogously (101.
At this point I shall leave the subject of nonlinear O.D.E. 's and
consider a rather different class of nonlinear evolution equationsof physical interest. The particular class of equations that I have
in mind axise in the context of long internal gravity waves in a
stratified fluid with finite depth,

The diagram in figure 1 is useful: p is the density, 6 - total
depth of the fluid, h is the scale upon which the stratification is
felt. The wavelength X is such that X> >h, and the waves are weakly
nonlinear with amplitude a, such that a<<h. The references (11, 12]
discuss the derivation in detail.

0'#o h

Figure 1.

The equation may be written in the form

ut + 2UUx + K x-J) u(Md - o (22a)

where

K(x) - C(k) ikxdk, (22b)

C(k) - -k coth k6+1/6, (22c)

or in the alternative form
ut + 2 uux + T(u x)- (23a)

where T[u1 ] (+ c.oth * +. 1 n (x-)J u dC,(23b)

by taking the Fourier Transform in (22b, c). As 5o we have the KdV
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equation

u + 2u a ~U, 0(24)

whereas if 6- we have the so called Benjamin-Ono equation:
ut + 2uux + M(Uxx) - 01 (25)

where H(u) - - u. x )_ d, is t Kilbert Transform.

The interest here is that even though the equation (22) or (23) is
an Lntegro-differential equation, it still has solitons, an infinite
number of conserved quantities, a Bicklund transformation, and is
related to a linear problem (i.e. a linear scattering-like equation

Its been pointed out in ref. [131 that the equation (22) has an N
soliton solution (see also [13a]). The idea is to put (22) into a
differential-difference equation by formally replacing k-i F- in
(22). Doing this yields (there are further conditions necessary in
order to do this [161).

u + ux + 2 uu x - ii u = o, (26a)

'where a
L (6) - a ± i- (26b)

Using the dependent variable transformation

U- -ic-(6) a log f -- ix log ! (27a)
where f

f~if(x t id) (27b)

we find
(i o t +. x + D)f f - o (20a)

with
DX ab - - ) a(x) b(x)Ix'=x. (26b)

(28) is the sam form as that in ref. 114). (27) via (28) has an N
soliton solution

N N
f, eE EOW Ai + r (29a)

where (k- 2 +(ict -kco )
whe ,xp(A) (ki+k,)2 + (kicotki k cotk a)2 (29b)

A one soliton solution is given by

k tan k1 -- , (30)(i+ me~k6) o~m( - ( o-k 6)t:l
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As 6"o

12k2 seth 7 (kx - ik t) (31a)

i.e. the KdV soliton. Whereas if we take 6- with k 1 m-k /c

such that 16 is finite, c finite)
2c

U . Z c - (32b)le (x-ct)

we .find the Benjamin Ono Rational Soliton (see Case 115a] or Chen
and Lee [15b], for the N soliton solution). These arguments extend
to the N soliton case as well and show explicitly that the soliton
(30) contains as limits both the XdV and Benjamin Ono solitons (in
contradiction to what is stated in E131). Moreover it should be
noted that there is a dynamical system which describes the motion of
an arbitrary number of poles for the intermediate equation (22)-(23),
which reduces to the KdV and Benjamin - Ono dynamical systems (see
(16]). gowever I will not go into that in this lecture.

Rather I wish to note that one can derive the following Bicklund
transformation (B-T) (17] with Wx-U:

(W + w') a A,+e i T(w-w) - ia- 1 (w'-w) + ei(ww) (32a)

(w'-w) t W -(-l4.)(w'-w)x + i(w'+w)xx

-i(w'-w) x T(w'-w) x + is-l(w'-w)(w'-w) x , (32b)

for Lhis equation. Indeed, substituting (w+w') x from (32a) into the
right hand side of (32b) we have

{wt+(Wx) 2 + T(w, )) - (w' + (w.) 2 + T(w' )) - o (33)t x x
so that if w' satisfies (23) (with w.-u') then so does w. These
equations may be used to generate solitons from a vaccuum. Moreover
the limiting forms are as follows. Calling Au-k cotk6, U-k cosec kd,
W-4"1w, '-C-1 w' (32) reduces to

(w X.(') 0 k 2  .(Q,..) 2 + o(S) (34&)

a1 (w) tm2k2 (w'-w)-("'-w)xxx+((w'"w) )x + o(6) (34b)

as 6-o i.e. the KdV B-T. Whereas if 6. we find the Benjamin Ono
B-T [17, 1$] and a special case of the result in (19]:

(v+w') x - A + in (WI-w) x + Ui(w' ' w) (35a)

(w'-v)t = -A(w'-w) x + i(W'ew) -i(w'-w)x H(w'-w)x, (35b)

(calling w'-mv, we may rewrite (33) to obtain a generalized Miura
transformation:

Vx + 2u a A + iT(Vx ) - id6v + U0eV (36a)

[ -
_ _ _ _ _ _ _ _ _ _ 4,
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Vt + (6"1+x)V - iVxx - 2iux + iVxT(Vx) -i6" wxuo (36b)

Substituting for u from (36a) into (36b) gives the following modi-
fied intermediate equation:

Vt + CV T(V) - i v - L V2 ] + iVxT(Vx)-o (37a)

Since uT(u)dx - o (if u-o appropriately as jxj -) we have:

V dxa-o (V-o appropriately as lxij-). So calling

X a iV + log(-A/u) gives from (36a).

eX-i - (-ix,-T(X x) + 6 "x+2u). (37b)

For A-, expanding X n xn and using the above argument yields
n.1

an infinita number of conserved quantities Xn. The first few are

2 3 3 4 2 1 2 3 2 3-1
Xi.U'M1 X2.Mu X3 .OU 3 TUx, x4 3u Tu u1 + 7.(Tux) *-U aTux,.

In order to derive a linear problem we define

log T+/Y" iV, (37c)

(log Y ) x - - T(V x ) + 6"V.

In the limit 6, for appropriate V, this amounts to splitting the
function V into functions analytically extendable into the upper
(-), lower (+) half plane i.e. (log) x- .(i H)Vx (note sign convention).
Substituting these equations into (36) yields the linear problems:

x - i + 3aT; - i(u - P) a - 7, (38a)

I + +(6"lA~ I {Iiux-T(u ) + 6 " u v} Yt o (38b)
t x xx xx

(X, A, v are constants). In deriving (38b) we actually use a trans-
formed but equivalent form of (36b):

Vt + (6"l )V - i(V +2ux ) + iVx(T(Vx)-6_V)

ati(T(V t) _,6 l Jx Vtdx + (6l+X) (T(V.)-6S1 V1

-i{'(V,. + 2ux) - 6 1 (Vx + 2u) - ivx2/2

4i(T(Vx ) - 6-IV}2/2 + 21 - o. (38c)

For small 6, introduce V-26(log ) x choose the parameters A, u as we

did above (34) and vu-k2 /4. Then taking u-o(6),
-~ 12

#± [l±d(lo#)x (10"4) xxx
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(from (37)), (38a), (38c) yields

* - (k 2 4-6"1u) Oo' (39a)

Ot + S(k2/4. 6"u)x + 4 xxx/3 o (39b)

On the other hand for 6-, we have

- i(u-), -y iW, , (40a)

i Yt + ill + (±iux-H(u x) x +} - o. (40b)

(40a) is.& differential Riemann-Hilbert Problem.

As a final remark (about a different topic), we have recently dis-
covered evidence [20] which suggests that the "higher nonlinear" XdV
equations:

Ut + 6UU x + Uxxx = 0 (41)

have a focusing singularity for Pk4, with P-4 being the critical
value. At this time we do not have a rigorous proof, but rather
have discovered certain unusual behavior associated with the evolu-
tion of the solitary wave under weak dissipative perturbations when
Px4.
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FONCTIONS SPECIALES. - Perturbations Jmnwes et Jornw particuh~re de certaines
solutions de I'd quation de IKorreweg de Vries. Note (*) de Mark J. Ablowitz et He Airamalt,
transmise par Paul Malliavin.

On construit uno famill do solutions de Mquation de Korteweg de Vries Ces solutions soar ,bceuo en
perturbanaslea potmnis d(d4-1)/x 2 , (d est un entier positil). Cotta sonoe do solutions a un analogue dans It cas
pbriodiqu.

We construct a iamaiy of slaazons of cte Koeege de Vries equatn. These soiurions are obtained withi a
per wbeatin oftepoternaisd (d +. j)Ix2 (d isa positive integer). This kind of solution has an analogue in tie periodic
case.

I. On.v~rifte faclement que le potentiel u(x, t)=21x2 est une solution de l'Ejuation (de
Korteweg de Vries):

Dans [11, on a construit une famille de solutions de l'&quation I1). Ces solutions decroissent
comme 2/x 2 quand I xjI tend vers l'infrni. Pour construire ces solutions. on a utilis6 la
mithode de perturbation de Schabat [2]. dont on a donni une derivation directe.

Duns ce qwi suit, on construit pour chaque cner d, tine fkaille de solutions de
1'6quation (1). Ces solutions decroissent comme d (d+ 1) / x2 quand Ix I tend vers l'infini.
Lorsque d - 1. on retrouve les potentiels de ( 1]. Si d n'est pas eigal i I1. le potentiel d (d + 1)/X2
W'est pa tine solution de (1) et une perturbation directe ne permet ps d'engendrer de
nouveiles solutions de (1). Pour obtenir celles-ci, on perturbe [21 la solution rationnelle
connue ((31, (41, [5]) de ['6quation (1)

(2) q,(x, t)- -2, log e(X+T1, , T 31 ... I ,

o6i r, - 12 t: r,(= 1. 4d. i*2) sont des constantes arbitraires et o6~

eat un polyn6me de degre namd (d ,- l),2 en la variable x.
On rappelle que Ies polynosnes 9, sont difinis par la formule de uicurrence [41:

(3) '+I dL- d+IO -,-(d+1)0,

avec 0 -i 1 0,=x (la prime d~signe la dLrivee par rapport i Ia variable x).
Ici, on faze Ia constante d'integrarion i l'6tape (d + 1) par Ia condition que Ie coefficient de

x"- dana 0,+, sit 6gal Al:

Par exemple. on a:

02 =X3 + T,
03 - X'+ 5 TZ X3 - t - ,

En particulier. pour chaque entier d, on a obtenu les solutions
42

(4) U (X, TO) -2 -T- 1og (e1 (X + T I I .T2 det A),
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oui A ost la matrice:

(5) Aij-8 1 1-CCj.e x k k X ,)x

On romarque que ces quasi-solitons solutions (4)-(5) sont des degeorescences de
combinaiscons de solutions p6riodliques et oxponentielles.

On s'attend i ce que les formules; (4)-5) aient un analogue quand on perturbo Is

solution [61:

de N'quation do Kortoweg de Vries, o1 () designe la fonction thEta de Riemnann. Le cas out
q - 2 9 (x), oil * est la fonction olliptique de Wojorstrass a &t6 6tudi6 dians [7].

On a une d6monstration de la representation (5) pour les solutions dians los cas
d -1, 2, 3, 4 seulement, mais on s'attend a cc que Ia representation (5) pour los solutions,
existe pour tout ontier d.

II. Les solutions (4)45S)sont obtenus de la maniire suivante : Soit * (x, k,) (i -1, n)
une solution de:

(6) d2 (- d

telle quo :

(7) d *-(-4kfj +2qd)*'-q'*,+)L*

(k. est une constante indipen'uante do x, mais pout dopendre do t). Soit A la matrice:

(8) Ai,=-81j + CCc f *(S, k,) *(s, kj) ds.

alots :

(9) d~x t)qd(X t)2 dlog (dot A)

oat solution do I'&quation (1) (voir [21).
Dam, [8), on a d6inontr6 quo dama les cas dm=1, 2. 3, 4, los fonctions:

(10) *(k, x)m 8,(x-(Il/k), 2 +(I/k 3 ). ,(/2-1)A

Od(X, T2 . '

et *,(-k, x) torment une base do solutions do (6).
Uno auro reprisentation des solutions do 16) a 6t6 itudiee dans (41. Do plus, on a

0,(x-(l/k,)-(1kA) r 2 +(/k3,)+(1Ik3). T,+(1k2?')+(l/k' ))

2d k 0,(x, T2, T3..IT
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La v~ricazion de (10), (11), (12) dans los cus d w 1, dmw2 est tri viale.
Dams le cas do potentiels periodiques, des formules analogues i (11) et (12) existent, voir.

par oxemple (71 pour le cas of! It potential est q - 2 9(x).

I. 11 est bien connu quo les formules (8)-H9) peuvent itre obtenuos soit par la methode de
perturbation de Schabat, soit en effectuant sur le potentiel q, des transformations de
Bk~und-Darboux successives (voir Par exempt. [9]). La rnithode do Ia transformation do
Biickund-Darboux [ 101 est Ia suivaine :SupposonS quo 4 soit uno solution do (6) et (7) Ct quo
le potentiol q satisfasse (1), alors lo nouveau potentiel:

Q -q - 24W/4V est aussi uine solution do (1).
Dams le cas do potentiols consideres ci-dessus, on pout obtonir los formulos (4H45) avec; un

nombre riduit do transformations do Backlund-Darboux. En fait, certaines des
transformations so reduisont i dos translations. Ccci est dfi aux propri6tes d'addition que
poss~cimt lea polyn6mes 0, (voir [81).

Remarquons qu'en perturbant le potentiel q, [formule (2)) par la tb~tode do Schabat, on
construit tine classe plus large do potentiels que cello donn~e par los equations (4)-().
Tous les potentiols ainsi construits d&croissent comme d(d + 1)/x 2, lorsque I x I end vers
l'infini (voir 181).

()Remise le15 sr- ambre 1980. acceptee 01 octobre 1980, revenue~ i 'imprimnei le 26janvier 1981.
11M. J. Astowrrz cc H. CORNILLE. Physics Letters, 72 A, n' 2. juin 1979.

(21 A. B. SCIIAsAT. Souiet Mack'. DWk., 14. a* 4.,1973.
131 H. AiMAuLT. H. P. McKs~m et J. Mosta,. Comim Pure and Appi. Math., XXX 1977, p. 95- i4s.
(41 M. AouFAa et 1. Ntoseu. Commn. in Math. Physics, 61. a* 1, 973.
[51 M4. 1. Aasowrrz ccii. SATsfi&A, 1. Mark. Phys., 19, (10). Octobre 1973.

[61 M4. P. McK.&r at E. TauuownrZ. Bull. Amer'. Math. Soc., 84, a* 6. novembre 1978.
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Nonlinear Inter-mediate Long-Wave Equation: Analysis and Method of Solution

Yuji a) Jukcht Satsuima, ("I and Mark J. Ablowitz
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A physically Interestng imnilnear singular Integro-differentlaJ equation which is an in-
termediary between the Korteveg--deVrles and Benjawnn-Ono equations is cousidered
via tbe laverse-ecaftertg trmnsform. Novel aspects of th, theory and Umita to the Be&-
jai-no equation awe discussed.

PACS numbers: 93.40.Kf, 02.30.+g

Recent studies have shown that the equation ter we shall do the following:
(a) Relate Eq. (1) directly to a linear Gel'fand-

u, +.8 2u .aw, . ) *0, (1) Levitan inltegral equation which has NV-soliton
solution$.

whore (7a)(0) .dy (y) cothbvr -x)/261/28 (b Discuss how to deal with this new scattering

( :. represents the principal-value integr"), is problem. We show in what sense the above
of mathematical and physical Interest. Physical- Ge'! and-Levitan equation ca~n be derived from

ly It represents long waves In a stratified fluid analytical considerations ad suitable scattering
of finite depth characterized by the parameter da.

6.1* Deendig o 5 e ge th Korswe-de(c) We shall also briefly discuss the limiting
Vrie (De ion an we 0e thKotw-e case at the SO equation for which there his also

liit) v euto s - salo-ae been considerable sti iy (see, for example, Refs.
limit),7-12) regarding solions, Ucklund transforms-

u, +3m, (8/3)u,. -0, (2 ios and linear scattering problems.
We begin with point (a). The operator T de-

and he Bnjamn-Qu (80 eqution~ ~fined below Eq. (1) Immediately suggests a spil-

(deep-water limit), tin; of the function u(a?) into appropriate analytic
functions. Namly, If we call OUs) - (7m)(2), in

111 +210'i +H~p) -0, (3) *0, then the boundary values on x ax, x real,
satisfy U* (x) -(Tu)O *im (). Here U* (k) are the

whore (NOWKv wv W.tdy ufr)/fr -x) (H1bert trans- boundary values of f unctions analytic In the hont-
form). Bene Eq. (1) is an intermediary equation zontal, strip between line a0 and line a*28, and
between these two very Interesting nontlinear evo- are periodically extended vetically. Moreover,
lution equations. Hereafter we shall refer to (1) periodicity requires that U* x) -U(x .2d8). io
as the Intermediate long-wave (ILW) equation. convenient to define g(r) a - L' (r +08)/2 [here

Matemaicaly peaking, Eq. (1) has scubaor so- g(s) is analytic in the strip -8 Cline 8 where-
lutlon,19' a B5.ckund transiformation, and a novel upon the splitting takes the form u (x) itgiv - i8)
type at linear scattering problemn.$' In this Let- -g(z .i)],(u().-Ejr-:) g'+83 Hence

01911 The American Physical Society 687



VoLwa46,NUma I=I PHYSICAL REVIEW LETTERS 16 M/cu 19Sl

(1) takes the form

'-g'.ja'" 1*-Z').,- 2(g -g"'; + ) +g(. " ) .o, (4)

where g * (v) 6(vi) U*()/2.
Consider the following linear Gel'fand-Levitan interal equation:

K(v) F ,y)+f:.K(v,s)(sy)ds-0, fory>x. (5)

Following the basic idea 09 Zakharov and Shabat,'L3 we introduce linear operators on F, such that

4.,F -3s ,- )F ( ,) -0, (6b)

where F* -F('i6,y ;:8). Then, direct calculation shows that K(,y) must satisfy

lis ,2, ..-. 2 "a.,. -iX",x)]vv -0.,) i- -"',),o (7b)

Compatibility between Eqs. (7a) and (7b) gives us Eq. (4) with g * (g) K* (V,x) 8K(s *i, x * 0). The N-
soliton solutions to Eq. (1) can now be readily constructed (in the usual manner) by assuming exponen-
tial solutions for F; i.e., P(, y) . C,() exp(it. ,x +iC.,1y), where C, -wc,* 1, Ot (2c,) -- 1, c,
>0 and C1(t) uC,(O)ep-4, (xj cot2,k6 -t6"')tl. A one-soliton solution is given by u 2c, sin(2c,)/
{ cos(2x) +cosh[2c,(v -(t))] }, where x 0 (t) = (2 c)" la[C t )/2xK,.

We now pass to point (b). As discussed in Ref. 6, the linear scattering problem obeys (with some
changes in notation)

iot +2 +t 6" )*, * + = +[ * iu. - T(s,) .v]1 o0, (8b)

where Ask coth(2k8), ;k csch(2k6), v = k- 2k,j'), and here O*(x) represent the boundary values
of functions analytic In the horizontal strips between Im z =0 and Im z = *26, and periodically extended.
As mentioned earlier this Implies #'(x)-a #*(x + 2 6). We note that this condition immediately leads to
T(O*- #') = i($. * ") which is required in Ref. 6. and that compatibility of Eqs. (8a) and (8b) yields
Eq. (1). In order to analyze the scattering problem, it is convenient to define a new function, W'(x, k)

#*(x,k) ezp(ik(x- i6)1, Whereupon the scattering problem becomes
ZW - w, +(9. + WNW, - w ') U--aW * (

with W'(x) a W*(x +18), C,k) ak * [k coth(2k6) - 16"] (We shall need the definition of t. subsequently.)
Now we define specific Jost functions for real k: M(x;,k) -1, as x-- , and N*(x, k) -exp[21k(x- i 6j
R*(x, k) - , as x -. . Each of these functions can be shown to satisfy an integral equation. For this
purpose, we introduce the notion of a Green function satisfying &G(v,y ;k) ,-6(v -y) [z defined by Eq.
(9). 1 Then

M*(x; k) -* 1+ f7.G, *(z, y, k)yM(yr h)dy, (10a)

N*(r, h) * exp(21h(x --1) 8ff G.. j3 x, y- hkuy)N*(y;, k)dy, (l0b)

where

G.2*(x, y;h) shall define p.,a 2k and p,,. (xat) such that
(2a - 1)/26 < Impe' (2n + 3)u/28 and similarly for

=Jfe0  
6 '(p;h)expi[p(x-y)Jdp, (11) -ImP.. Moreover double poles occur at special

1. values of W(k) satisfying k -0 and p C,(). We

and *'(;)- u(p-(C.- 6")[i - ex -2p6)}". call these values {.(,1, 7." }a, [I C,( >0,
'(p;k) has poles atp 0 -0, p=* .'( ()). We ImZ '"<0]. The contours C,, C, are taken to be

note C,'I (...) is a multivalued function and we the lines Rep -10 and Rep +iO, respectively
have an Infinite number of poles p for which we (this is necessary in order to preserve the bound-

688
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ary conditions). It Is important to remark that point at -/28 and abranch cut from C.=-L/
Eqs. (10a)-(l0c) are Fredhoim-type integral *qua- 28 to 9. -

tions, unlike the usual case of the Schr-dinger By virtue of the fact G,'(x, yk) -G 2 (x, y;k)
eqution where the Jost functions satisfy Volterra =(2i 6)" - exp(2i(x- y)]/2i6C., we have a
equations. In addition we note that, by using resi- relation among M*(x, k), N(x, k), and R7(x, k) for
due calculus, Eqs. (l0a)-(10c) can be represented real k (Le., C. >- l/(26)],
in an explicit manner useful for the proof of ex- M1-k)- k)R*(rk)-b(kWXrk), (12)
istence and analyticity of the solution (conver-
gence of Neumann series). From Eqs. (10a)-(10c) where a(k)-I -[f.'. y)M (y;k)dy]/26 C, b(k)
one can establish the following (assuming $(x) -- {'. u(y)M'(y, h) exp[- 2 hy- 8)]dy}/2i6C..
decays rapidly as I x1 -- 1: Hence a~k takes on the same analyticity as M(x;

(i) M , N , andS *have convergent Neumann h), andas I l--,a(k)-l. Onthe other hand,
series in certain regions of C, plane for given 8 for C.+i0 with r.<- 1/26 and real (Le., A is in
and maxuuI chosen small enough. the upper half plane at the edge of the principal

(ii) In the C, plane, p, (n a 1) has a logarithmic branch), we have a relation G, Jx, y; k) - G, *(x,
branch point at C,- 1/26 and square-root branch y; k*) = 1/2i C. (note C.(k+ O) - C.(hk -iO), ko
points at C.'(R) and C".complex conjugate of k], which yields

(lii) Despite (U1), M*(x; k) and R*(zk) are ana-
lytic in the upper and lower half C. plane, respec- M k)=(kN*,,k). (13)
tively, whenever the Neumann series converges The bound states [as x - -, M (x; k) - 0] are de-
inthis region. Moreover, as I C.I-a, M ,I *  flnedbya(kh)-0, M(x;k.)-b, N *;k,), for
-1+O(l/ ). Here we note that is a multival- Imkl>0(1-I,2,..., N). The scattering data are

ued function of C., and we are required to define now given by S. 4), b(h), {h,, b1 ,!J. We have
an appropriate branch In k plane. For the func- found that a k) has only simple zeros and they lie
tions M* and R *, our principal branch is that one on the imaginay k axis, Le., 4-ix,. From Eqs.

containing the real k axis, and which has Im k<o (10b-10c) and consistent with our analyticity re-
corresponding to Im CZO. There Is a branch quirements, we assume, for X* and N, the tri-

angular representations

R'xk)1.~ e~xsepbv-),for Imt, <0, (14a)

N'(; k) - *(2i (x - i ) + , dsK(x, s) exp x -s) +. 2(s - 0) (14b)

where K*(x, s) satisfies Eq. (7) and K*(x, s) - 0 as x - -. Inverse scattering formulas are obtained as
follows: Divide Eq. (12) and Eq. (13) by a(k) and operate with (1/2w)f dt. exp(iC.(y -x)I (I.e. Fourier
transform) for y >x. Then using Eq. (14), we obtain the linear Gel'fand-Levitan intera Eq. (5) with

F ~ ~bw, y)a9 2

were C,=-ib/d, and d,-[&a/gc..C. From Eq.
(Sb), the Ume dependence of the scattering data umml Heaviside step function. Similarly from
is given by a(k,t)e(k, 0), b(k, )=b(k,0) expi-4 the fact that G"(x,y;k) - G (x+2i8,y;k) we have
xti(x86' )tJ, for real k, bl(s)=b,(O)xpj4sc(A, (p;h)=a (p;h)exp(-28p) -(-p)/2h. These

J6"')t]. We expect ths Gel'fand-Levtan equa- formulas suggest a natural splitting of the 8 func-
tion is valid when the Neumann series expansions tion and the Green function. Hence from these
of Eq. (10) converge. For fixed mal a~, 0) 1, results, we may deduce the split equations for
when 8- (the DO limit), this will not hold and the elgentunctions,
new singularities due to the Fredholm nature of iM. x; k) +2kM*(x;k) - 1]
Eq. (10) may have to be taken into account. We
briefly mention this later. -P(aM')(x;k). (16a)

We now pus on to point (c). Our basic philos- Mi(x;k) 1 .(2h)-'P'(M )(x; k), (1b)
ophy regarding the DO equation Is to obtain in-
formation by taking the limit process 6- -. First where P a(1 ; UI) are the usual projection opera-
of all if we simply take 8- -, then for real k, C. tors. It is also worthwhile noting that the eigen-
a Mi() and 40(p; k)-(p- 26r'(p), where dlp; value problem withk < 0 (a--) in Eq. (16) cor-
k) Is defined below Eq. (11) and i(...) Is the responds to what happens to C. <-1/28 for finite

! --
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8. Moreover we have found a solution of the satisfies the homogeneous equation of Eq. (10b)
homogeeous equation for N*(x;k) with some k c0 with G.' given by G2*(xy;k) -(2)'Jo 4d(p
(this seems to be related to DO amoitons). In this - 2k)'-expp(x -y) for k-.a<O. 0

regard, we note that one can actually compute This work was supported ly the U. S. Office of
certain eigentunctions of the scattering problem Navl Research, Mathematics Division under
for the BO equation. We shall use the scattering Grant No. 0014-76-C-0867, and the Air Force
problem [from Eq. (9) with 6-m: Systems Command, U. S. Air Force under Grant

iWse(u +2k) W - 2kW. (11) No. AFOSR-78-3674.
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over, this condition corresponds to the require- ". Sum n Y. Isbslmort, J. P y,. Soc. Jp. 44,
ment that W10 is, in fact, analytic in the upper 681 (29.
half plane. Thus we expect to find s soltons "A. Nakuinra, J. Phys. Soc. JP. 4?, 1701 (1979).

when v-an (in agreement with Rot. 14). The situa- 'IT. L Book i X. D. ru= , Phys. Lan. 74A, 173

tion with v o integer is more difficult. Neverthe- 3V. Z. A. B. Sbabat Functoell AWL
less we found that Eq. (18) has elgenvalues for A 8_, I n (1974).
vLnth*er-ng r-1<&os(xul,2,...). Wealso 4J. D. Mlse ad N. R. Pereira, Phys. Fiuids 21, 700

remark that when v - the elgenfunction W*(x; k) (1"8).
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Linesrzatlon of the Korteweg-de Vries and Painlev II Equations
A. S. Fokas and M..J. Ablowitz

Departsmqu of M themocs and Computer Sc~amce. Ckvksox College of Techaoloro. Pots--m. Mew rov* Z3676
(Received 22 May 1981)

A nw InteraI equation which Unearizs the Kortewe-de Vrie sad PSnlev6 11 equa-
dom, ad to related to the potentials of the Scbrudliger elgeavaue problem, ts present-
ed. Ths equlan allows one t capture a far larger class of solution. than the Gel'f&d-
levitan equation, which may be recovered as a speclil oe. As an application this
equation, with the aid of the classical theory of ingular mtesgal equaions, yields a
hre*-parameter fasUly of soludius O the self-s2m-1r rsduc o of Koteweg -de Vr1es

whih Is related to Palne6 EL

PACs mnmbers: 02.30.+g

Since the work of Gardner tal. in 1967,' there has been wide Interest in the analysis of nonlinear
evolution equations solvable by the so-called inverse-scattering transform (1ST). The prototype eami-
pie is the Korteweg-de Vies (KdV) equation

10,+6Ma4M,-O. (1)

In this note we shall present a new Unear Integral equation which, In principle, allows one to capture a
far larer class of solutions than does the Gel'fand-Levitan equation. Specifically we claim that if
4(. h, t) solves

Op~h; X, t) + j Mg) t(kX + kIt)] CFI x d) (2

where dA(h) and L are in appropriate measure and contour, respectively, then

a

solves the KdV equation. The well-documented physical significance of the KdV equation, of its self-
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similar analogue, and of the associated Schr6dinger scattering problem require us to attempt to char-
acterize the form of the most general solution/potential possible.

We now enumerate the basic results given in this note. (I) We give a direct proof that (2) and (3) solve
(1); (i) we show how the well known Gel'fand-Levitan equation can be obtained from (2) as a special
case; and (UiI) we characterize by a matrix Fredholm equation a three-parameter family of solutions to
the similarity ordinary differential equation of (1) which is directly related to the classical second equa-
tion of Painlev4 (P II). We end with some remarks regarding the role of Bicklund transformations and
relevant generalizations.

We now consider (I). The point of view we take here is, in spirit, similar to that of Zakharov and
Shabat.2 Specifically, by direct calculation we show that solutions of (2) substituted in (3) satisfy (1).
We mae two assumptions: (a) dA and L are such that differentiation by x, t may be Interchanged with
fz (b) the homogeneous inter equation has only the zerosolution. Deflining Z,-4. Z eS, where Z,

I t+ 8,3, after some manipulation we find
2 , k; x, t) + i gXpf i (kX +l) kf, L(P(I;~ X, 9) dA(l) a 3k[kg,, i 97.. iunp]. (4)

Similar calculations show that the quantity in brackets in the right-hand side of (4) satisfies the homo-
geneous integral equation. Hence 44-kgo,+ 9,,+ iuaO which implies Lon=0, whereupon 8s 1 ,(Z-)dA
=0 Is (1). Moreover the equation Mqp-0 is directly related to the Schr6dinger elgenvalue problem. If
we define

V(h; x, t)= -(k; x, t)e*p[i(kxi k3 t)/2J,

then RqP u 0 gives

(5)
Next we pas on to ('U). The classical theory of inverse scattering and appropriately decaying solutions
of KdV may be most easily obtained as follows. Let the measure dA(h)=ro(Jk)dk/2 , where ro() is the
usual reflection coefficient of u(,0) and the contour L goes over all the poles of v0(k). [Here we have
assumed, for convenience, that u(v,O)- 0 rapidly as xi- m] Then substituting the expression for o
into (2), defnn

ad using

p( s(h +i)x/2 J/(L i~) - exp[i(h 1)/2J/2d}

(, 1 satisfy Imh, Iml> 0), we obtain

where

Jqx, t)=()fezp(i(kx/2,3t)])Oi(), (L passes through the kai=c,). Then (2) reduces
to a linear algebraic system from which the well

and u(r, t) 2ScK(x, , L). Hence by ehoosing the known N-soliton solution is immediately obtained.
above measure dA and contour L, the Gel'fand- We now discuss (lII). The KdV equation admits
Levitan equation (6) may now be completely by- th similarity transformation s4, t)= (Ax'V(3 )2/s,

passed. where x'=x/(3) u1s. The equation for U is given
Soliton solutions of (1) may be calculated in a by (dropping the primes)

particularly easy manner from (2). Locations of
the poles on the Imaginary k axis in rk, 0) corre- K,(VU= U+ 8UU'-(2U+xU')=0. (7)
spond to soliton amplitudes, and the residues of We note that (7) is directly related to P n:
r(h, 0) at these locations play the role of the nor-
maLixation coefficients. Pure solitons may also P,()= V"-xV-2 VIaa. (8)
he obtained by taking the measure as Specifically we note that the transformations U

dO4),= fc 6(h- i)dh =-V 2 -V', Vn(U'O)/(2U-x) relate (8) to the
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equation self-similar reduction. Moreover the contours

K.,(U) • U*+2-xU+[vU'-(U')/(2U-x)=O L, are obtained by finding the solution to the lin-
ear problem (Uuw,) w"-(w + ')=0 in terms of

with ,-,,,(a + 1). However, by direct calculation integral representations and then deforming these
[(2U-x)C,(U)]'u(2U-z)K(U), hence K(U) is an contours so that they all pass through the origin.
integral of (7), and thus there is a direct tramns- For example, note that L, + L may be deformed
formation between (7) and (8).3 One may make to the usual Airy-function contour. If we restrict
use of these transformations fo find all the known ourselves to this Airy contour, the result in Ref.
(see, for example, Lukashevich' and Erugi') 5 is obtained in the same manner as that in (ii)
elementary solutions of P I. Ablowit and Segurs  above.
bad established a connection between P Ir and IST We shall proceed to demonstrate that (9) may be
and had characterized a one-parameter family of reduced to a system of Riemann-Hilbert problems
solutions via the Gel'fand-Levitan equation. Re- which are solvable using Fredholm theory. For
cently Flaschka and Newell considered P 11 via this we need the full power of the classical theory
mooodromy theory. In the latter work the authors of singular integral equations.'"
derived a formal system of linear singular inte- Cons.der the sectionally holomorphic function
gral equations for the general solution of P II.

However, the highly nontrivial question of ais- 4(2).Lf'" d-r. (10)
tence of solutions was left open. z r-z

An application of the result presented above in The lines of discontinuity of 4(z) are L,; thus
(I) is that a three-perameter family of solutions using the Plemelj formulas, we have
of (7) may be obtained from the linear singular
integral equation 0(t)•4.(t) f 4(r) d on-i,

-t

Stdra(t), toni., (9) **(,) * t ) .nf 2( t on(L1,

where b(t)-f(t)-exp(i(tx+t/3) ] and fi where W*(t) for t on Lj has the standard defini-
,, . 1L (see Fig. 1), A - -p, - ,A, 

=p, lions'' of limits at #(z) as z - t from the "left-
Aap,. (Hereafter j always stands for j 1,... hand side" (+) and "right-hand side" (-) of L,
5). The solution to (7) is then obtained from and where principal-value integrals are implied

*1 af when needed. With use of (11), and Eq. (9) for t
Uf .on L. and -t on -L,, we obtain a system which

we choose to write in the form
(4 depends parametrically on x). We note that
both (9) and U are obtained from (2) and (3) by a * (t)•G(t)*-(t) +Fit), ton r,, (12)

where r,-L,+(-L,), *(t)-(t(),*(-t)T,

-(t) = t(-'), F(t) -L(t)f(t), -f (-t)H(-t)1',
L5 C_ 4 H()=JAifLton L,, 0ifton-L}andthecompo-

neuts of the 2x2 matrix G(t) are G,,(t) - -2b(t)s, o x HUt) - - (;.(- 0), G;.2 a G a 1.

Lz One can prove the following statements.
A. (a) #*(-t), *(-s_) are "minus" and "plus" func-

tions, respectively. (b) Necessary conditions for
/,,00 E" solvability of (12) are the symmetry conditions

E rG(t)uG(-)", F(t)+G(t)F(-t)"O, which are
3  satisfied by the above G, F. (c) Thus (12) defines

LZ  + a system of discontinuous Rlemann-Hilbert prob-lems with the additional restriction that 4(t)
" "*(-t). However this condition can be relaxed/ since one can show that (12) always admits a

L4 L ;S solution with this restriction, and moreover, in
our case the solution Is unique.

F1G. 1. Coumurs moaed with Zqs. (9) a&W (12). In order to solve (12) we first consider the
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homogeneous problem. The standard procedure such that w , and w j, are plus and minus func-
is to transform the discontinuous homogeneous tions, respectively (e.g., the branch cut for w,,
problem to a continuous one, and then obtain the is taken between 0, -z, and hence lies to the
fundamental set of solutions, right of L:,). The properties w,,(O+) =expt-ixsJ,

Associated with a given contour r,, define the wj,(0-) uexp[ilz.a" will(t) 1Ji-t) allow us

foUowing auxilliary functions to map the homogeneous system 4 (t) - GU)(t)

i t "* . ( t which has a discontinuity at t=0 to the following
wi It) (t-jz- wi "t) t ' Riemann-Hilbert system which is continuous at

the origin:
(13)

Wil Al , k-l,2, ()(t) -(t)*(t), t on Z, , (14)
where we have used the transformation * 1t)

where a, is some j -dependent fixed point otf T,. -AnV(t)± (t), #(t) =AI(t)*'(t) and hence g(t)

The branches of the above functions are chosen =[f[(t)]f:A"G)An'(t), with A, $*(t) defined
by

exiix/2 exptuizn./2 0

where for j a 2, 3, 4 we have a a 1, 0= 2 and forj 1, 5 we have a = 2, 0 - 1; the A,, and A,, are defined

by

expjv~, ug, .( ,~2)d, ~ .. ~,,(~+~2Ii2A,1 aexp[2iTk.,1 , Aj,=exp( 2z1A,21

The matrix g(t) has the:properttes g(t).(g(-t)]' and detg=-1.
One may characterize a solution of the system (14) by imposing the condition -(z) - = as IzI.

In A. This leads to a Fredholm equation for, say, 1(), which however must be interpreted in a

suitable principal-value sense as It does not converge in the normal sense at infinity. Alternatively,
one may obtain a regular Fredholm equation of the second kind by imposing conditions at a finite point

off all contours, say z -1. This leads to the following Fredholm equation for * *():
-,'(t ,oL (16)

wher ,3-(1),.~. ,( + f ), andI inthe unt'm-atrix. Any two ls~ arli dependent _ 'point property of U is easily verified.
vectors, say A,,, lead to a fundamental matrix Finally, we make some remarks. First, we
y#(t) = [(:), ( )] for the system (14). only expect from (2) to obtain solutions to P11 in

With use of the above results the fundamental the range -1 < a < . To obtain the solution for
matrix of the discontinuous problem (12) is given all ranges of a, we believe, the Bicklund trans-
by formations (following Rosalesw) and "finite per-

X 10 =AQ* (t)[ 2,10, * /)1 (17) turbations" (see, for example, Ablowitz and
Cornlle n ) of suitable elementary solutions must

Hence the solution of (12) is given by be employed. Similarly, wider classes of solu-
tions to KdV should be obtainable this way (we
shall remark on this more completely in the fu-

ture). Second, straightorward generalizations
S , X (t) )f Ix (t)] I) dr. (18) to the higher-order KdV equations, as well as to

2 20 - t many other nonlinear evolution equations, are

possible. Third, motivation for some of the ideas
Having obtained 410(t and using (11) to obtain in this note originate fro the concept of sum-

,(t), we have characterized a three-parameter ming perturbation series. Relevant perturbation
family of solutions of U. With use of the results series can be readily developed (see, for exam-
of Fredholm's theory the nonmovable critical- pie, Refs. 11 and 12).
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Perturbations of Solitons and Solitary Waves

By Yuji Kodama and Mark I. Abkowitz

A direct perturbation method is developed to investigate the evolution of solitary
waves in the presence of small perturbations. A uniformly valid first order
solution is constructed. The method is applied to several nonlinear evolution

equations which support solitons or solitary waves. Finally, the method is
compared with other approaches in the literature.

1. Intivductlon

In recent years there has been a great deal of interest in nonlinear dispersive wave
problems admitting, as special solutions, localized, nondecaying waves, called
solitary waves or solitons. In this paper we shall mean by solitons those waves
which satisfy nonlinear evolution equations solvable by the inverse scattering
transform (I.S.T.-see for example [1], [2D. Given the physical significance of
these solutions, a natural question to ask is how they develop under the influence
of weak perturbations. For those problems giving rise to soitons, there are three
methods which have been developed that use the techniques of I.S.T. [3-5]. The
methods in 131, 141 develop perturbed equations in the scattering data via an
associated linear eigenvalue problem. The field variable is recovered via the
inverse equations (e.& the linear Gel'fand-Levitan equation). From a somewhat
different point of view. Ref. [51 develops a perturbation theory using a Green's
function to solve the associated linearized equation in the higher order problems.
In order to calculate the Green's function, information from I.S.T. is needed.

On the other hand, it is well known that there exist very general perturbation
techniques that are applicable to nonlinear problems where the leading order
problem has a well-defined solution (e.g. solitons, breathers, solitary waves,
periodic solutions, etc.). These ideas have been applied to a wide variety of

Addm for coespondaft: . J. Ablowiz and Y. Kodanri. Department of Mathematcs. Clarkson
Coage. Potsdam NY 13676.

STUDIES IN APPLIED MAITIfEMATICS 64:2-245 (1961) 225
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problems (for example (61-fI I]). Our main purpose in this paper is to illustrate
how these simple ideas can be applied to problems with solitons and solitary
waves. In the soliton case, we compare our results with those already developed in
the literature. In some cases we have found discrepancies be'ween the existing
results. We shall discuss this and make suggested modifications to some of the
presently used techniques. Specifically, we examine perturbations associated with
the Korteweg-deVries (KdV). modified KdV (MKdV), nonlinear Schrodinger
(NLS), and sine-Gordon (SG) equations. In addition, we discuss perturbations of
certain other "higher" nonlinear KdV and NLS equations (presumably not
solvable by I.S.T.). In some of these cases we find what appears to be a
self-focusing singularity.

The basic idea of the perturbation approach is as follows: We study the
solution of a perturbed nonlinear dispersive wave equation of the general form

K(q q q... F(qq...), 0 < e-C 1, (1.1)

where K and F are nonlinear functions of q, q . The unperturbed equation for
e=0 is

K(qo, qo,, qo...) 0, (1.2)

and its solution q0 is to be taken as a solitary wave or soliton solution (or perhaps
a breather). We write this solution in terms of certain natural fast and slow
variables:

q0 
= 40, 02 .... em, T; P, P2....P F). (1.3)

In (1.3), 9, (i=I... m) are so-called "fast" variables, T=et is a "slow" variable,
and the P, (1= . N) are parameters which depend on the slow variable (in
some problems, one might need to also introduce a slow variable X=ex). In
many nroblems we need only one fast variable, such as O=x-P,t in the
unperturbed problem. We generalize 0 to satisfy a8/3x= I, and ao/at= -P, and
use P, =P,(T) to remove secular terms. With this, we call such a solution (1.3) a
quasistationary solution and write q=4(8, T, e). It is necessary that we develop
equations for the P,..., P, by using appropriate conditions, such as secularity
conditions (there must be N such independent conditions). Some of these condi-
tions are formed from Green's identity as follows. We assume an expression for 4
of the form

(after introducing appropriate variables 9, T, etc.). Then (1.2) is the leading order
problem, and

4 F q -- (1.4)

- - - a
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is the r'st order equation. Here L(a,4 0)u=O is a linearized equation of
K(q,q,,q ... .)=0 after transforming (x,t) to the appropriate coordinate #,.
Denoting by v, (i=I,....M) the M solutions of the homogeneous adjoint
problem satisfying the necessary boundary conditions (e.g. v, -00 as 181 -- o).

LAV, =0. i= 1 .. M, MEN,

where LA is the adjoint operator to L. we form

(L4,).vi - ( L vi.4, =fi. (1.5)

Equation (1.5) is always a divergence. It may be integrated to give the secularity
conditions. These secularity conditions allow us to be able to compute a solution
4, to (1.4) which satisfies suitable boundary conditions (e.g. 4, is bounded as

SI-. ). However, as is standard in perturbation problems, there is still freedom
in the solution. This is due to the fact that some terms in the solution 4, can be
absorbed in the leading order solution 40 by shifting the other parameters. The
solution 41 can be made unique by imposing additional conditions which reflect
specific initial conditions or other normalizations.

Some properties of this method are the following:
(1) A simple uniform quasistationary expansion on Ix < is generally not

obtained (see also [6]).
(2) In its region of validity we find a quasistationary solution, i.e.. the solution

depends on the 8, and T only:
(3) In order to develop a valid expansion, we match the solution obtained via

the method above to a nonstationary solution for large 10, [e.g. I0-- /I le].

In the following sections, we apply the general scheme outlined above to a
number of nonlinear dispersive systems supporting a soliton or solitary wave
solution. In a separate communication we discuss the analysis for the more
complicated examples of bound solitons, i.e. breathers [181.

2. Perturbed KdV and MKdV equations

As examples of the general scheme in Sec. 1, we study the KdV and MKdV
equations with a small dissipationlike perturbation. (For small dispersive per-
turbations, see Ref. [ 12].) Physically, these equations correspond to the evolution
of a soliton in a slowly varying medium [10, 11]. An interesting feature of these
equations is the appearance of a shelf behind the perturbed soliton due to the
dissipative perturbation [3.4. 10, 111. We shall find that in this case the perturba-
tion expansion is not uniform, and there are three regions to the solution. We
discuss this problem in Sec. 4, and construct a uniform solution.

2.1. Perturbed KdV equation

Let the perturbed KdV equation be of the form

q, +6qq +q , = -ryq, (2.1)
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in which the soliton solution to the unperturbed equation (e = O) can be written

= 2n'sechy(O-8 0 ) = 1. L-9= -4172. (2.2)ax at

[Although we shall present results for (2.1), one should consider (2.1) only a
prototype equation. The analysis applies in much wider generality.] Here 17 and 0o
are arbitrary parameters which may depend on the long time scale T=et. Under
the assumption of quasistationarity, (2.1) becomes

- 474 + 644# + 40, = -Y4 -er. (2.3)

Expanding 4 in terms of e, at leading order, we have

- 47401 + 64oo + qo0,p = O, (2.4)

and the solution

40 = 2712 Sec ( - 0). (2.5)

At order e, we have

-- 4 J)21, + 6(404), + 4,,,, = F1  ,

ti -'No - 4or
F,= -T4o {0o (-o€,

74o --1?(240+(0-80)4#) +o8r4o. (2.6)

From (2.4) we find that 40 is a proper solution of the adjoint problem of Lu=0,
i.e.

LA4o = 0. L = 4123# - 608, - a#. (2.7)

decaying rapidly as 101-,. Then the compatibility condition

f 40tdO = 0 (2.8)

leads to

1 ar _y. or )(T) 17(0)exp( f ryd7). (2.9)-

. - 3 -.
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This implies that the amplitude and speed of the soiton are decreasing (y >0)
adiabatically according to the dissipation (e.g. a climbing soliton on a beach).
Taking (2.9) into account, we solve (2.6) and obtain the solution (see Appendix
for the details of the calculations).

,=16- [-l+tanh.+3( 1 + 280)(1 -#tanh.)sech 2 .-

+-0(2-OtanhO)sech2 OI (I€jie"). (2.10)

where 0=7(6- 0 ). Higher order calculations indicate that the expansion breaks
down when !.- - /2 (It should be noted that this order is related to the
breakdown of the expansion in [3.41 for time t.-.e-/2.) From (2.10). one can see
that there is a shelf introduced by the dissipation, i.e. asymptotically

- (I -l202e'*} for I -,0 e-/2

2y oe for i , Ce - / 2 , (2.11 )

which agrees with the results in Ref. [41 (via the inverse method). We also notice
at this point that the parameter go can be taken arbitrarily, since the term
#0r(l-40tanh#)sech2 * can be absorbed into the leading order solution 4o by
shifting 'I to 1-eOT/( 8 ). However, for -q to be given by certain initial data one
can determine the evolution equation of 0 by the following. Let us consider an
initial value problem with the initial value in the form of an unperturbed solitary
wave, i.e., q(x,0) = 2n' sec " ?Ix. (2.12)

From Eq. (2.1), we have the following global relation (rate of change of energy):

d a
7, f q2 dx 2eyf q2 dx. (2.13)

Moreover, let us assume that q takes the form q, +Sq where q, expresses soliton
part, i.e. (2.5). and 8 q the correction to the soliton. Taking (2.9) into account (i.e.,
at leading order (2.13) is (2.9)1, we have

d7t) 1 .y() (2.14)

where A(t)= f0(q, Sq+(Sq)/2)dx. From 8q(x.0)=0. we obtain

A = O. (2.I)
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It turns our that (see Sec. 4) the length of the shelf is -e-' for t-e-1. Hence for
thee times the order of the second term in %(t) is the same as the rust one. We
argue that even though for short time the problem is not stationary, the nonsta-
tionary portion of the soliton quickly moves to the tail of the soliton. For times
t-e- 1 the region near the soliton. jl.e9iC/2, is quasistationary, and in this
region 8q=8q(f. T). Hence. in order to determine the evolution equation of the
parameter 00, we require the following relation, as an additional condition:

J40(0)4, (8)d69~f (6q)2dx=O0. (2.16)

The condition (2.16) gives

aeT 3L'2fo(Sq)2 dx". (2.17)
aT 3,, 2,,f-.(q'x

Here, we notice that for the range of time IC<te -' the second term in (2.17) (i.e.
ff,(Sq)2 dx in A(t)] can be ignored. For this range of time. Eq. (2.17) gives the
same.results as Ref. [4]. Also in (2.16) and (2.17), we must use the results of Sec. 4
where we compute Sq.

2.2. Perturbed MKdV equation

In this subsection, we consider a prototype perturbed MKdV equation which
takes the form

q, + 6qq, + q. , - q. (2.18)

The soliton solution of the unperturbed MKdV equation is given by

qo = i sech l(O-o), L-= 1, L=- z (2.19)
' ax 8t

The analysis is similar to that of the KdV equation; hence, we shall only outline
the method. Letting 4(f, T; e)=q0 +e4l +. . as in the KdV case, we find

-7124# + 6 4 240 + 4j= 8Y# - e
4

r, (2.20)

from which, at order e, we have

=4, a -n%# +6%),+ * 0,.,. = I,

, - I - o+{q +(- o) 4o} 9or4o.- (2.21)

-.-. -- ' - , -- - , .... -i - *l' . I-
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By using LA4 0 = 0, the compatibility condition is given by

f4_0 o,dS = 0. (2.22)

which leads to

L 2"t. (2.23)

From (2.23). we calculate the solution 4, of (2.21) to be

4, =.[(l2sech2,)(2tan-'e*ir)

+ (-0+(2 log sech 0 - jo) tanh -o secho]

+- or(l - tanhO) sech (Ioh< e-'/ 2 ). (2.24)

where 0=7(0-0o). Again. the shelf appears, and asymptotically.

4 - -L~(r+0,2e) for I < /2

-- e-# for 1 <4j<e - 1 /2 . (2.25)

As explained before in (2.24), we have the arbitrary parameter 8o which can be
absorbed in 40 by shifting ii to 1-4sor/( 2 1j). For the initial value problem. we
take the relation to be the same as the KdV case. i.e. (2.16), and we obtain

881 1 G"_-v - J (8q) 2 ah: (2.26)

where 6q expresses the shelf part. which can be derived in the same way as for
KdV (see Sec. 4).

3. Peairbed NLS md SG e"atons

In this section, we discuss the perturbed NLS and SO equations. Most of the
procedure to be used in Sec. 2 can be given natural extensions to these systems.
We find that the first order solution 41 does not have a shelf, but rather a "dress"

.71-77
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which is located around the soliton. We also rind that due to the dress the
perturbation expansion is not uniform.

3.1. Perubed NLS equation

Consider a prototype perturbed NLS equation in the form

iq, +q. +2q 2 q" = -47q. (3.1)

The unperturbed soliton solution is given by

qO ='isechi(G- 0)exp(ii(9- 0 ) +i(o-ao) ], (3.2)

where

ae ae

• !q- +42, L= C. (3.3)

Here , v, go. and o are arbitrary functions of the long time scale T=et. We
assume that the quasistationary solution of (3.1) takes the form

q $9, T. e) exp[ij(9- 0 ) +i(O-o 0 )]. (3.4)

Substituting this into (3. 1), we have

-n24+ 4# + 24'4* ='q),

A q) i -y4- i41 + (e-o)90 4- (UfoT +*or). (3.5)

We also assume that 4 can be expanded by

4(0, T, e) = 40 (0, T) + e4(, T)+... (3.6)

where 4o is the leading order solution of (3.5), taken from (3.2) to be

4o = isechil(0-0o). (3.7)

From (3.5) and (3.6), at order a, we have

- 41, + 4,# + 4404, + 240141 = ,. (3.8)

where t, =A4). setting ,, +4,, whre*, and t wre real valued functions,

L
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we obtain a system of equations,

4 0 -nit +U -i 0 + 64J2i -Re , (3.9a)

A4 -9i ,*# + 24kj =m 1, (3.9b)

It is easy to see that ;j and 4 have localized solutions around the soliton. By
noting that the operators L and M are self-adjoint and L40# =0, M40 =0, the
conditions for the solvability of (3.9) are given by the secularnty conditions.

J t 0 ReFdO = 0. (3.1Oa)

f4o1m t, deO = 0. (3.1Ob)

From (3.10a. b) we obtain the evolution equations.

A=0 and !L= -2y, (3.11)
aTj BT

which show that the amplitude of soliton is decreasing (y >0) but the v.elocity is
constant. With (3.11) we have the solutions

;I= - (Ror +Or) 1 -(0-8) tan1h,(G-8o)) scchi/(9-eo)- (3.12a)

1 -- E(O-Oo) R8or +70(-80)} sech-q(0-0o), (3.12b)

which are valid for 10-0 0 <a - ' 2. The expansions must be modified for suffi-
ciently large 18-001 in a manner similar to KdV (see Sec. 4). Here we have two
arbitrary parameters 0o and ao which provide the shift of the location and phase
of the soliton. We notice that the terms (1-(O- 0o)tanh-l(O- 0 )}sech (O- 0 )
and (8-8o) sechn(O- 0 ) can be absorbed in the unperturbed soliton by shifting
-q and , respectively. For the initial value problem, we take the orthogonality
conditions

f-O d0 = , fJ 40;d=o. (3.13)

which give

T = 0, ao 0. (3.14)

8T ' 8

- ..- -! I
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These conditions may be derived from the following relations (modified con-
served quantities), in a similar way as in the KdV case:

d
" fqqd = -ZrrJ f qqdr, (3.15)

-f (qq*-q.q) dx - - 2eyf (q q -q*q) dx. (3.16)

We note that since there is no shelf, the equations (3.13) have especially simple
forms.

3.2. Pernwbed SG equation

Next consider a prototype perturbed SO equation, in laboratory coordinates.
which takes the form

q,, - q. + sinq -eyq,. (3.17)

The soliton of the unperturbed system can be written

q0  4 tan - ' exp (8- 0 ), e= 1, e= -C. (3.18)

Under the condition of quasistationartty, we have

- _-C2) ,, + Sin = et(4) + o(82),

t(4) = cy,, + 2(C#)T, (3.19)

from which, at order e, we obtain

4 a -0 -(C)t,.± +Cos.4 0 1 = 40 ). (3.20)

By virtue of the fact that L is self-adjoint and Lqo. =0. the compatibility
condition can be given by

Sq. t(G) dO = 0. (3.21)

From this, we obtain the evolution of C(T):

dC -cI-z'C

tC
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or

-C(T) = - C(0) exp-2,/YT  ). (3.22)

l-C(T)2  I-C( XPz

Thus, owing to dissipation (- > 0), the speed of the soliton, C, decrease to zero.
From (3.22). we calculate the solution of (3.20),

q = ( .Caeo 'C 9-Go (3.25)
(I- C2)12 (0-0)1 "T+ 2(2-Cz) (-)}1sech =

which is valid for 19-0o<g- 1/2 The expansions must be modified for suffi-
ciently large 19-GoI (see Sec. 4). Since the term (8-80)(O- 0))/ V-'-r}-T, 40
can be absorbed into 40 by shifting C, 8o can be taken arbitrary. For the initial
value problem, we take the orthogonality relation.

f 40 41 d =-- 0, (3.24)

which leads t6

-=0. (3.25)

(Again the simple form of (3.24) is due to the fact that there is no shelf part.J The
condition (3.24) is derived from the modified conservation law,

J, qoq, dv -r qq dx. (3.26)

For the ILS and SO equations, we have shown that the expansion is not
uniform but only of algebraic type (i.e., it only has nonuniformities of the form
ex-Pe), unlike the KdV and MKdV cases. In the next section, we discuss this
problem and construct the uniform solution.

4. Unfom sWuton

In the previous sections, we have developed a direct perturbation method by
assuming quasistationarity. Then we have shown that there is more than one
region to the solution. In this section, using the perturbed KdV equation (2.1) as
an example and using the method of matched asymptotic expansions, for r-ae -
we construct a solution which is uniformly valid for all x. In the first region,
11-tcC" 2 , the soution is quasistationary; however, in the other region, the
solution depends on x and t strongly.

As shown in Sec. 2 for the perturbed KdV and MKdV equations, there are two
regions which give rise to nonumrformities. In the region - o <x -C , that is,
behind the soliton, the expansion is nonuniform due to the shelf.

V.

ilmill i' -. - - '. . . ..------- Illll I
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We require that the solution to (4.5) satisfies the matching conditions, i.e.
boundary conditions (2. 11),

q - 8,e- L 1 y) e~( -Ly' for 1 3.y_ l2-- 3e C

-0 as Y-.O 0. (4.6)

Expanding q='qo+iq + ..., and O= 4+eo1 + ... , at leading order we have

4qooe + (Oo-4 00") q00 = 0. (4.7)

Taking (4.6) into account, we obtain the solution,

qo = 8Ti2e- xe, (4.8)

where K--((4n O -#r)/Oj})
/2 . Here 0 is determined by the secularity

condition in the next order equation. Substituting (4.8) into the first order
equation. we find that the secularity conditions lead to

Kr - -4K +3€rKKr 0 0, (4.9a)

(K-0) r+ (3,0,;O K2 -4ni)(K 1),y = - 1+ 3,,y,,yyK1 + 64yKK.

(4.9b)

In order to find the solution of (4.9), it is convenient to take K= 1; then we have

#or - 4 %r0y + 4y = 0, (4.10)
*lr - 4n2r + 3 , = -,!+ 

3 #.y#%yy(

Equations (4.10) are similar to Johnson's results (101. We follow Johnson's work
to find approximate solutions of (4.10) for Y,O. For this purpose, we assume
that the solutions take of the forms

'00 =  a (T) Y + 2(T) Y'2 + ,...- (4.11s)

#1 =--81( T) Y + 02( T ) Y 2 + '"' (4.1 lb)

Under the matching conditions (4.6), we have

al(T) -2-, a 2 (T) (T) = (4.12)12, 12-nz

and so on.

, iiii - - --i-i-e-i -n- 
- - . -. .
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For Y-. o, we have a similarity solution. Noting that (4. 10a) can be written in
the form

,o + 3,,, = 0, (4.13)

where /=or, o=T, and =Y+f412(T)dT' (note that (4.13) may be solved
exactly], we have the similarity solution to (4.13) or (4.10):

2=- ( , . (4.14)33 01•
/3

Thus a description for the uniform solution is

4(X, t), Ifor ->-e'1 2 ,

q(x,t)= 40(0, T)+e4,(8, T), for jo9I;e-'/2, (4.15)
18?exp{#O(Y.T)/C}, for ; e- 1/2

where #o, 4, are quasistationary solutions given in (2.5), (2.10) respectively, and 4
is given by (4.3). Note that 8q in (2.14) (i.e., q=q, +Sq) is given by 8g(x, t)=
q(x, t)-(0, T) in (4.15).

For the NLS and SG equations, there is no shelf. Therefore, we can use the
latter method in this section and construct the uniform solution.

S. Conser aon laws

It is instructive to study the effects of the perturbation from the point of view of
the conservation relations. In this section, as an example, we study the perturbed
KdV equation and veritfy the results derived in the previous sections. It should
ao be noted that the conservation laws were used effectively in [3,4,16, 17] to
deummine the structure of the shelf.

From Eq. (2.1), we have the following conservation relations:

(I) Ma.s conservation,

IfJqdx -yJ' q dx.(51

(2) EnAey comvadn

d f 2. 2rvfJ q2 dx. (5.2)

(3) Mon of mis of mm (nomwntum conservation),

df _qx - 3'qdx-ryfzqdx. (5.3)
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From the solution, we have the following facts:

q, d" = 4-q, (5.4a)

8.qdx = 471(e - W7' - 1) + O(e), (5.4b)

q2 d = n' O~l),(5.4c)

-_ d = = 0) (5.4d)

where q, o40 (0 T) is given by (2.2) and q=q,+8q is given by (4.15). On the

other hand, the relation (5.1) gives

Af =_qdx = Moe aJr,1 (5.5)

where M expresses the total mass and M0 =471(0). Equation (5.5) is equivalent to

the results (5.4a) and (5.4b). The relation (5.2) gives the same result as the
secularity condition: 71, = - 2Zzy/3, or

d
-NE, =2yE,

where E, = i 1. Therefore. the changing energy is provided by the soliton part

only, or in other words, the interaction energy is canceled by the energy of the
shelf part, i.e. (2.15). From (5.4d) we rind that the relation (5.3) yields 0, = -479.
In order to calculate the next order correction, one should have the solution at
order el, say q2 (which we do not obtain here). Since the solution q2 may also
have a shelf part, the integral f/,_xq2 dx is order 1. Thus our results are
consistent with the conservation relations at leading order.

6. Perrmbed higher nonlinear MKdV and NLS equations

In this section. we discuss certain perturbed "higher" nonlinear MKdV and NLS
equations as examples of (presumably) nonintegrable systems. We find that if the
order of nonlinearity is ;P 5, the perturbation method suggests that the perturbed
solitary wave is undergoing focusing in an analogous manner to the higher
nonlinear NLS equation [131.

Let us consider the following "higher" nonlinear MKdV equation:

q, + Aqlq. + q.. -rfq (n-3), (6.1)
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in which the unperturbed solitary wave may be written

qo = asCh2 *'?(90-°), a= 1, Le= -4. (6.2)

where a is given by Aa' =2(n+ lXn+2) 2 /n 2 . By assuming a quasistationary

solution, we have

-4-±$ 4 +Aq40 +q 5 4### 4)
F(,4) = -,- , (6.3)

from which, at order a, we obtain

41 a -4± ,, +A(04,),+4j,#, = -(- 00). (6.4)

= o +(+-4yj,-

Using the fact that L£"4o =0, the compatibility condition is given by

f_ o() dO = 0, (6.5)

which leads to

187... 2n
-- - -- . (6.6)

From (6.4) and (6.6), we rind that there is a shelf which is given by

412(4 n) f_ 0 4, as f--o.

This result (found by reduction of order of (6.4)] is consistent with KdV and

MKdV. Uniform results can be obtained following the ideas in Sec. 4.

From (6.6), one can see that the perturbation scheme breaks down at n=4.

This implies that the assumption of quasistationarity cannot be applied to this

problem; that is, the effects of perturbation are not adiabatic. For the case n ;P 4.

this result suggests that the equation admits of a seff-focusing singularity. Whereas

we have not proven the existence of the singularity, we can show that the similar

situation occurs for "higher" nonlinear NLS equations (where the existence of a
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singularity is provable). In this regard, consider a "higher" NLS equation.

iq, + q.. + Aq "q= -iq, n ;b 2, (6.7)

which has an unperturbed solitary wave of the form

qo = asch/N 1(-6)exp i(o-O), (6.8)

where AaZR =(n+ 1)9/n 2 . Here. for simplicity, we have taken the solitary wave
in the rest frame, i.e.

rx = L = 0, Le = _ LO (6.9)
a=' at a x= °  at n,'

Under the assumption of quasistationarity for the solution, q=4(8, T,e)
expi(a-a.). we obtain

M2

-i + 4fp +A141 2 '4 eA4), (6.10)

A4) = -iV#-'r -oor4.

At order e, we have

712n2 4 + 41# + (n(+ )A4 0" + A+o:" , j ',(40). (6.11)

in which, setting 41 =t +i4,, we obtain

"2 + +,,, +,A(2n,+ 1)40';, ReA 0). (6.12a)

n2- , + ,,# + A4' ¢ Ini 40'). (6.12b)

The compatibility condition

f" ,oIm A 4o) d= 0 (6.13)

gives

-n- 
(6.14)

7,' r 2,-,n

• + . .• I l l I l ,, , . I I I 
Il
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At n =2, the perturbation scheme breaks down. Thus if the order of nonline:rty
is greater than 5, the perturbation changes the solitary wave drastically. However.
this effect is not really due to the perturbation. Rather it is inherent in the
equation itself. By using the conservation laws. one can show that the equation
(6.7) has a focusing singularity.

Consider the evolution of the following quantity [131 (moment of inertia):

J fx 'qjzdx. (6.15)

Then, from Eq. (6.7), we obtain

+4-t+4ey+4e y2J= 2fq.') qa dx. (6.16)

For n = 2, this becomes

d21
-"= 8I1 + 0(6), (6.17)
di2

where I is one of the conserved quantities (if y = 0),

13 -f(jq 12--liq } d. (6.18)

This implies that if 13 < 0. J goes to zero at finite time. and the equation has a

focusing singularity. No such argument has yet been given for (6.1).

7. Discusion

In this section we compare the method considered here with the other approaches
in the literature. As a concrete example we discuss the results for the perturbed
KdV equation (2.1).

In the existing literature a direct perturbation method has been applied to the
evolution of solitons in slowly varying media. e.g. [10], (11]. However, in neither
of these papers is a specific initial value problem considered. Indeed, (I I] makes
the claim that [101 is mistaken due to neglect of a specific phase. Our results
demonstrate that the phase term go is fixed only by specific initial values. Any
other choices are ad hoc, since addition of the term 80 to the phase does not lead to
a secularity in the real field.

An alternative approach for problems admitting solitons (not solitary waves) is
to employ methods of inverse scattering. In (31, (41 the time dependent o.d.e.'s
governing the scattering data are used. (In [5] a Green's function formulation is
developed.) In the presence of a small perturbation F(q), where the equation
takes the form

q, =K(q) +eF(q), (7.1)
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crudely speaking, the scattering data evolve according to

T= ( K(q)+,F(q)] dx. (7.2)

where S represents some portion of the scattering data (e.g. the reflection
coefficient) and 8S/8q is the functional derivative of S with respect to q. In (7.2),
one can apply straightforward perturbation methods to remove time secularities.
The perturbed soliton is found via the inverse scattering equations. It is interest-
ing to note that this method, while removing all time secularities, does not remove
the space secularities (see Sec. 4). Apparently, for certain regions (large x) the
Gel'fand-Levitan integral equation produces convergent but nonasymptotic
expansion using the simple iteration of the integral equation. It should be noted
that in [3] and [41, they considered the perturbed equations for the range of time
1 ' tc- . For this range of time. our result. which becomes Oor = -y/3,q, agrees
with the result in 14]. This is in disagreement with the result in [3]. The error in (31
stems from the fact that they assume a certain form for the scattering function
a( '); namely, a( )=( -i, 1 )/( +i l ), where 71, is the location of the eigenvalue
at the initial instant. It turns out that after the initial time this formula must be
modified (for long time a(r) may be quite complicated]. In any event, the
perturbation method using inverse scattering is fairly sophisticated and requires
detailed knowledge of I.S.T.

We also considered the method of Keener and McLaughlin [5]. Unfortunately,
a naive application of their ideas is not completely satisfactory for the KdV
equation. If we simply follow in a completely analogous manner their work on the
NLS equation (for which our results are consistent with theirs), the appropriate
secularity condition is =

ft. *"Fdx0= , (7.3)!

where t is given by (2.6) and v satisfies the adjoint problem of the linearized KdV
equation,

v, - 4,l2u0 + 6qov# + v#o= 0. (7.4)

with qo =2nsech' -q(0- 0 ). We have two solutions of (7.4):

V, qO,
=2 -I + tanh, + ( +,- S,2t) seh2 -0, (7.5)

where *'=(O--o). We note that v2-constant (*0) as 0-0 -o; hence, it is not
a proper solution in the sense of (2.7). Equation (7.3) using v=v, is the same as
(2.8), and gives the evolution equation of 71, i.e. (2.9). However, the second
equation of (7.3), using 0 = 0 2, is not satisfied. We can see this by writing

f'df,.px - f0v.q(. ,dx (7.6)
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where q, is the perturbation of the soLiton and we've required q(x.O)=O. From
(7.6), (7 1), we must have

f vq, dx = O. (7.7)

Since q, generates a constant shelf whose area increases with time t, the left hand
side of (7.7) is proportional to t. This implies that (7.7) cannot be satisfied. We
conclude, of course, that the method of Keener and McLaughlin cannot be
applied by directly substituting into formulas analogous to the NLS problem. For
the KdV perturbation problem, the Green's function is, in a sense, improper, and
the condition (7.3) must be modified due to contributions of the continuous
spectrum. McLaughlin has also noted similar behavior (14].

Finally, we mention that the direct perturbation method can also be applied to
more complicated solutions, such as breathers. We shall report on this work in a
future communication.

Appendix

Here we give the calculation to solve for 4, of (2.6). Settingy= tanh-q(0-8 0 ). Eq.
(2.6) can be written

( ~(-y2) ±41 + 12~ y- 4 (A.1)

where P is given by

2 ' I_ Zy l2+ 890
=LtA 12ylog' Y #2-31 l+y 3n l-y "T"

Taking into account that Lo = 0 is a Legendre equation, we have v= P(Y)=

15y(l -y 2 ) as a proper solution. By using the variation of constant method, Le.

41(y) = A(y) P?(y), (A.2)

we obtain the equation for B(y)=dA/dy,
dB 2(1-4y')

B = G, (A.3)

457 y(-y2)

28= 95" 1~ F'"4 y1-'z ' -

2 a1 o I

-- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~~~~1 8T "~ _Y.. )2m , a " ' '' " "• ... "-- ' '
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Since this is just a first order ordinary differential equation. we easily obtain the
solution

-y loggT -) J zL+-Y (A.4)
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The Periodic Cubic Schrodinger Equation

By Yan.Chow Ma and Mark J. Abiowitz

Solutions to the cubic nonlinear Schrodinger equation, periodic in space, are
developed.

Introduction

The development of the inverse scattering transform (I.S.T.) has made it possible
to solve certain physically significant nonlinear evolution equations [I]. The
original ideas were applied to the Korteweg-deVries equation on the infinite
interv,1 with rapidly decaying boundary conditions [2]. The solution is obtained
via a linear integral equation. A second equation of physical interest solvable by
I.S.T. was discovered by Zakharov and Shabat 13]. They studied the cubic
nonlinear Schrodinger equation on the infinite interval. This work suggested that
indeed many equations were indeed of I.S.T. type [11.

Recently there have been significant developments regarding solutions to these
equations with periodic boundary conditions. For the Korteweg-deVries equation
References 14-8] develop many of the main ideas. A review of some of this
work appears in Reference (9]. In this paper we examine the cubic nonlinear
Schrodinger equation

iq, + q=- 21q q = O, (1-)

where q(x, t) is periodic in x with period T for all time q(x, t)=q(x+ T, t). We
follow closely the analysis in [4, 5]. In the defocusing problem [- sign in (I =-)I we
find the analysis is close to that of KdV, save for the need of an additional set of
scattering data. In the focusing problem [+ sig in (I:-)) we find significant
differences from the KdV theory. These differences are due to the fact that the
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"nice" spectral properties for the defocusing case no longer hold. In the latter case
we also discuss the question of stability. Although it is clear that the analysis
presented for the periodic defocusing cubic SchrOdinger equation can be readily
extended to CO initial values, this question (to our knowledge) still remains open
in the focusing case..

Our approach here will be to review many of the ideas in (4-8] and to use
elementary methods and analysis. We shall attempt to spell out the basic ideas in
the clearest possible way. One of our aims is simply to isolate the key differences
between the defocusing and focusing problems. These differences are the reasons
why the focusing problem has still not been completely solved. The paper is
divided into two parts: Part I on the defocusing case, and Part II on the focusing
case. Much of this work is contained in Reference [14.

L Th periodic defocusing cubic Sclr6dinger equation

1. The direct scatering problem

The associated scattering equation for the defocusing cubic Schrodinger equation
is

-+i'u = qo2 ,  (l.l.a)

"v' -,i'o. = q*v .  (L Lb)

It is shown in [31 that if

v(x, ) -- (, X:)

is a solution of (1. 1), so is

= ( o x '

The two solutions are independent if their Wrooskian is nonzero. We therefore fix
two independent eigenfunction bases:

'') ;,(X, (1.2.a)

where

, I II IIII(1.2.b)
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O$x+T, r) is aLso a solution of (1.1) due to the periodicity of the potential q,
and can be expanded in terms of o(x, r) and O(x, i'):

O(x + T, a#(x, + bj(xC (1.3)

Evaluating x at xo, we obtain

a(r, xO) = -01(x o + T , r), (1.4.a)

X(.o) = 02(Xo + ,) T, (1.4.b)

Using (1.1) (the Wronskian relation) and (1.4), we obtain the following relation

between a and b:

(', xo)a'(;', xO) - b(r, xo)b*(", xo)= 1. (1.5)

The Bloch eigenfunction

(x ) (XI

is defined as

Expanding 4P in terms of ,, j:

0 = , + dj, (l.6.b)

and using (1.6.a) at x-=x o, we rind

c(a-A) +db* = 0 (1.6.c)

and

cb+d(a--X) = 0. (1.6.d)

The condition for nontrivial solutions c, d is (using (1.5)]

V, - 2avk + I = 0. ( 1.6.e)

For real r we have the folowing cases:

(I) a2 >1: A is real and the two Bloch eigenfunctions are unstable.
(2) a! <1: A is on the unit circle (X=e ) and the two Bloch eigenfunctions

are stable.

2 ___- --
7777 -7-; -
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(3) a2 1: X I and at least one of the Bloch eigenfunctions is periodic or
antiperiodic.

For convenience, in the analysis that follows we separate a. b, vI, and v2 into
real and imqinary parts:

a =a + ial, b= bt + ibr, (1.7.a)
+l = i i° t 1,2. (1.7.b)

aR, a, b1 , u,0 , and v, are real when is real.
Next, we look at the spectra of (1.1). We choose the following three spectra,

which will simplify the reconstruction of q.

(i) The main spectrum: The main spectrum is composed of the eigenvalues 7
at least one of whose eigenfunctions is periodic or antiperiodic. From the above
we see that the r, are the roots of 1-a2 =0:

1-4(') 0 (l.8.a)

We define the stable band to be the line segment between any two adjacent 7
such that I -a s 0 for real r. Likewise, we define the unstable band to be the line
segment between any two adjacent r,' such that I -a2 40 for real . I: is named
the band edge. A typical function a i = aR(r) is given in Figure 1.

(ii) auxiliary spectrum (I): This is composed of the eigenvalues ,' such that

01,(xo - T, y,') + 02(x0 + T, y,;) = 0.

From the definitions of, , a, and b we see that the y' correspond to the roots of
al +b, =0:

a,(y,') + b(yi') = 0. (l.8.b)

a R(C)

Y1 _NJ

F'tsre I.

r4

C

II II I I i:" . • i -
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Note that from (1.5) this implies that when '=y, I -a' = -bA 4O. Hence the y'
lie inside the unstable band.

(iii) Auxiliary spectrum (11): This is composed of the eigenvalues 7; such that

*#,(xo + T, 1) + #,(xo + T, 71j) = 0.

7'; are the roots of a, +b =0:

a,7)+ bjt(-q,) = 0. (1.C.)

At I=i, 1- = -br a0 and the 7 lie within the unstable band.

There are several properties associated with the above three spectra. The proofs
can be found in the appendix.

(1) The main spectrum r (I =1,2,... .o) is real and can be divided into what
we shall call nondegenerate band edges (r,) and degenerate band edges (f,). The
property

aa

holds at the nondegenerate band edges, whereas

aae .-a-t ',) = 0
rr 

I

at the degenerate band edges. r'[ will be either a simple or a double root of
-a' =0, but not of higher order.

(2) The auxiliary spectra y' and 7; (i=1,2,..., a) are real and must lie inside
the unstable bands or on the band edges. All the ' and iq are simple roots. At
any f we have a1 =bt =b,=0, and we can therefore split y,' and 71 into y, "j and

4,. The values of 9 and 4, coincide with r, whereas y, and , lie in the
nondegenerate unstable band. There will be only one -f, and one 7, in each
unstable band.

(3) ajt(r),00 for Ia(r)A<l. a(r) and b(r) are entire functions of r. (If q(x,0)
is real, we can show that a(r)=a*(-r). Thus in this case the main spectrum will
appear in positive and negative pairs.] The above properties are summarized by
Figure 1.

2. N-bad potential

An arbitrary periodic potential has an infinite number of r,. Here we restict our
initial conditions in such a way that we will have only a finite number (2N) of
nondegenerate band edges r, with all the other band edges being degenerate (&).
This type of potential is called an N-band potential. Following [4], we now prove
that any periodic solution of 2=o8C.4/8q*=O will be at most an N-band
potential (C are real) of the equations (1.1), where I, (m=0, 1,2..., N) ae the
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conserved quantities of the cubic Schrodinger equation:

10o O+ I rqj I dx, (2. I.a)

J:=-jJo 4 (qq.-qq.*)dx, (2.1.b)

12 - r(lq. I I 14) (2.I.c)

£0

etc.
First we note that the evolution equations which can be solved exactly by the

inverse scattering technique and have (1.1) as their scattering equations are

iq, = ! m = 0,1,2 (2.2)8q*'

where m = 2 corresponds to the cubic Schrodinger equation.
Next, choose the time dependence of the baseeigenfunctions to be

-- = A-, +Bz + X0, +X) (2.3.a)ath

"C- + D-0 +,#I + J(A#* ). (2.3.b)

To keep #,(xo, t, r)= I and #(x o, t, ')=O for all time we take

A- -A(x o , t, ),(2.4.a)

I&= -- -C(xo, t, ) (2.4.b)

where , and p are independent of x.
The consistency of (2.3) and (1.1) gives us the evolution equation as well as

D(r)-A*(r)= -A(C), C()=B*(r*). Thus, it is obvious that A(r) and X(r) are
imagiary whenever " is real. For each m we have the corresponding A. and B.,
where A. is a polynomial in r of order m and B. is a polynomial in r of order
m- 1l 1]. Both have coefficients which depend on q and its derivatives. We list the
first few A. and B.:

m Evolution equation A. B.

0 iq,=-q -i/2 0
1q, =q -ir q
2 i+q.-21q zq-0 -2i2 -ijqj iq,,+2rq

-. . . . .......... " ........
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Evaluxtin the equations (2.3) at x=Xo + T, we get

* -1= () - (W)b(O, (2.5.a)

ab" ( -()a() + 2(J)b(J). (2.5.b)
at

These results can be written

ar = [A, (2.6.a)

where

b*(r') a*(r*) A= A'(*) X (r')(

TraceA= 0, since X is purely imaginary when g is real.
When we superpose those equations in (2.2), we obtain the following equation,

which also has (1.1) as its scattering equations:

(2.7)
m-0

The corresponding A, B, X, and,% for (2.7) are

M )NA= 7. C.A., B = . C. B., (2.8a.)
winO mwO

X-= - ,( xo, t, is /= - BO( xO, 1, '.(2.8.b)

If q(x,O) is periodic in x and satisfies .. oC.81/8q*=O; then q will be
stationary if it evolves according to (2.7). Hence, q(x, t)=q(x,0), a(r, t)=a(r,0),

b(, t)=b(,0), and from (2.6)

[A. t]=[A, t],. 0 = 0. (2.9)

Note here, the a(, ) and b(f, t) are for (2.7) and not for the cubic Schroedinger

equation. In general a(r, t) and b(t,t) will be different for different evolution

equations because of the dispesion relation (1]. Still, a(r,0) and b(r0) will be the

same for all equations in (2.2) as well as for (2.7). The reason is that we obtain
a(f,O) and b(C,0) from (1.1), which makes them independent of the evolution

equation and only dependent on q(x,0). Thus, [A, t]Io =0 is also true for the

cubic Schradinger equation.

i~~~ ~ 7 7, i= iiw .- .
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From [A, tPj,=o =0 we get

+ -0. (2.10)

It follows that the roots which correspond to a ()=b(r)b*(r*)*O are the roots
of( - But the roots of a2(r)=b(r)b*(r*)*O are also the
roots of 1-a=0 (with aat/a#O at the roots), which are the band edges.
Thua, the band edges are the roots of X( ')A(1)- ( From (3.8.b) we
see that X is a polynomial in " of order N, and & is a polynomial in r of.order
N-I1. A )A*(r)-p( ,'*)=0 is a polynomial equation in t of order 2N, and
hence there are at most 2N simple reots of 1-a2 =0. This proves that the
potential is at most an N-band potential. Using (2.9), we may also show that -f are
the roots of the polynomial equation -iA+I= 0 and , are the roots of
-is\+pt =0 where pt--iRt +ip t . Dubrovin (131 showed that any N-band poten-

tial of the Hill equation satisfies .1-oC,81,,,8/q=O (In, are the conserved
quantities of the KdV equation) with some C.. The proof for the cubic
Schrdinger equation is similar and hence omitted. We conclude that
T.Z..C,.81./q*-O gives us the most general N-band potential. Hereafter we
concentrate on the V-band potentials.

3. The inverse scattering formulas

Next we find the scattering data as I I--o o using a WKB approach on (x, ') as
c,' and applying (1.4) we rind

aR = cos l + s- j X + rjI q tdx+O - , (3.1.a)

a,-=- -sin aT +-22!T x 'I Tq 2 
dx + O r, (3.l.b)

b 2 rbjt qj(Xo)sina + r2(3.ILc)

b= - q,(x 0 ) sn. +0C (3.1 .d)

hencp,

(a, + b) 2

Since ax, a1, bjt, and b, are entire functions, the ratio (a, +b,) 2 /(l -4) can be

. . . . ." 3 .: r
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exresed as the ratio of their roots; i.e.,

IV

a,- +b_)
2 = 1 ('-___

2 2 - g(4). (3..a)
IU (-a)

where Sg() is entire with no roots. Using (3.l.e), 1)= 1. Similarly,
N

(a,+bR) = 
_= __(__-__)

(-ab = III (3.2.b)

i=
= 

I

The inverse scattering formula allows us to reconstruct the potential from the
scattering data. We expand Equation (3.2) for I '-- oo and make use cf Equation
(3.1) in order to compare the coefficients of the O(1/') term. We get

%q, = L I r- 7. -t,, (3.3.a)

1 2N N

qR -2 + (3.3.b)
Si=t =!

The above equations can be used to reconstruct the potential at some point xo.
Using the idea of Dubrovin and Novikov [51, we note that the point x0 is
arbitrary and hence (3.3) can be used to reconstruct the potential at any point.
For this reason we develop the equations of r, -t, and 71, with respect to xo.

Changing the point xo to xo +dxo, we have O(x, xo +dxo, r); since O(x, xo +
d0xf) is a solution of (1.1), it can be expanded in terms of O(x, xo, ') and

O(x, xo, t) (with the coefficients of expansion independent of x). We write this
(using Taylor's theorem) as

,,(xo+dxO,.') ,2(x, xo+dxo,')((x, x+dxo,r) *i'(x,Xo+dXo,r') !

=[i+Q(xO)dxol( ?(X,xor) *,(,o, '))' (3.4.&)

where

Q(Xo) (?::(::O 1-(XO) Q= = Q 1 , Q; = Q1. (3.4.b)

jQ1*)Q2(O)
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Replacing x in (3.4.a) by x+T and using (1.3) and the definition (2.6.b) for t, we

obtain

Nt (3.5)

-0

(ie., the scattering data are obtained from the base at x xo). Since J 1(xo, xo , )

1 and jh(xo, xo, ')0 for any xo , we see that

arX0 X 0 0 I~O ax

IX= 02xX0 0a- 2 (XI,xo,9) (3.6.b)

Using (3.6) and (1.1) we obtain

Q(xO) ir -q(xo) ) (3.7)Q~x) -q(xo) -ir

Hence Equation (3.5) can be written

dO ( a(r) /
d~" b*(g*) a*(*)] =  2!rb* (r) -2qaj - 2j(qjtb,+ qlblt)

(3.8)

From (3.8) we get (d/dxo)aR=O, which means that ri (=1,2, .... 2N) are

independent of xO. This is not true for y, and qb.
Taking the square root of Equation (3.2.a), we see that

0',11 (i-yi)a a+bt (3.9)

where dhe square root is defined so that the real part of it is positive and o'= "" 1.

Using (3.8) and evaluating t at 1,, we get

d (a,+b) = 2;,oa o iy()-i (qa+yj), (310)

with all 1 . Combining (3.10) an'd (3.3), we obtain the diffeetial equations of

. . . ....... ... .. 77 ],7. , : ,, .
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-f, with respect to xo:

2NN

dx0  II 2Y-~
kvbj

i 1,2,..., N, j = 1. Similarly the above analysis yields the equations for i:

2N

dLJ 2N

i1,2 Z.,. N, 6, = = 1.

The equations (3.11) give us the motion of -, and q, with respect to xo, which
in turn determines q, and qt for all xo so long as -t and iij are given at one xo and
the al (6/) are specified at that point; a. and 6. will change sign as y .and q reach
the band edge. In (3.11) the (i=1,2,..., 2N) are branch points. We make
branch cuts in the nondegenerate unstable bands , (1,j = (r: r2j-I < <r2j}) in
the r plane. In this way we form the Riemann surface R of the roots

2N
e( ' = [[ ( - ','/ '(3.12)

A path for y,(i1) has two sections [I,,+I ([1j, +I) and l,,-J (ij, -1). the
former being the upper sheet of R( ) with a(6,)= + 1, and the latter being the
lower sheet of R(r) with oj(d,)- - 1.

Define

Qj ('j, j),

Qj =fi ('%, 86). (3.13)

By making a change of variables (Abel's transformation [9D we can integrate the
equations (3.11). Define

N-2 N-2a =EtdE _ _F__d

7-.. . .M-- - C E *, , ( 3 .14 .a )
k-,O k-.O

AFI
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Substitutin' (3.14) into (3.11), we obtain

. = _ 2iCvz.,, (3.15 .a)
dxO

(3.15.b)

m 1,2,..., N, N;'2, where we have used

7j = 6 ._ ,(3.16)

Ot, - -

and 8,, is the Kronecker delta function. The proof of (3.16) is given in the
appendix.

The equations (3.15) yield straight line motion in this new coordinate system.
Maveev (10] discusses the solution of (I-) in terms of theta functions. Equations
(3.14)-(3.15) are important in constructing the proper variables to use in the theta
function. The N-band potential has N periods where each yj- , 1 move within the
unstable band and possess a definite period in x; the periods have a common
commensurate period T.

4. The time dependence of ihe scattering data

In order to reconstruct the potential qt and q, at a later time we need to know the
scattering data at a later time. From (2.6.a) we have

aaftla- = o. (4.1)

It is thus clear that the main spectrum is time independent. If q is an N-band
potential initially, it will be an N-band potential for all time.

Using (2.6.a), we get

[a1(r, xo)+b,(r, xo)] = 2[a,(r, xo0)+b,(, xo)]BR(r, xo)

+ 2bR(, xo)[B(, xo)+2r +lq(xo)l2],

where

Bt(r', x.) = 2r'qj(xo) - !- q (xo),aq,

Bf(C, Xo) = 2t'ql(xo) - Lq#- (xo).

ax

" -a • • a ax
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Next, we evaluate in the above equation at r=, and make use of (3.3):

i Ik j iml

-t (j-"'),:)+

IV 
2 N I

HI (11i in

= 1,2 .... N. Similarly, we obtain the evolution equations for 71:

ak j - 71k)

-11 1Z +, +,n - qk-

IN N 2IN)

rI, I 1 i i, l I'

+ ±~~~ r2iVi77 , (~-Ik)J (4.2.b)

j=1,2,.... N. In Equations (4.2) we see that the evolution of -, in time is coupled
with the evolution of 7,, whereas in (3.11) they are decoupled in x0 .

L-,
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For an N-band potential the periodic cubic Schradinger equation (I-) can be

solved by solving the scattering equations (1.1) and obtaining -t, I, and ;, at a

certain point xo. We then use (3.11) to reconstruct the potentil for all x0 . It is

actually easier to obtain Yi,, y, and Ili for all x0 by simply solving the polynomial

equaionS X()?()- ') ') 0 ' etc.. provided we know the value of N

beforehand- Equations (4.2) are used to obtain y, and i at a later time. and we

use (3.3) to reconstruct the potential. Mathematically. the original nonlinear

partial differential equation has been replaced by 2N nonlinear ordina, dilfe -

tial equation which can be integrated via Mbel's transformation.

Although Equations (4.2) an complicated, the transformation (3.14) can be

used to interate these equations. We rind after some algebra

41 -3 2i 1 2 )N .M (4.3.a)

A.-= 4iCv.3,.+( X . (4.3.b)

for m= 1,2..... N2 , '2. where we have used (3.16) and

iv N,vY (4.3.c)

The proof of (4.3.c) is given in the appendix. Also.

=k" 2iCo., 43d

(it), (4.3.e)

form - 1,2, N=

5. Discusion of the defocusing problem

The previous sections give a systentic way of integrating an N.band potential

for (I-). In general. an arbitrary periodic potential will have an infinite number

of unstable bands. Nevertheless it can be approximated by an N-band potential

provided that the potential is CO. To see this, we consider the Bloch eigenfunc-

tion (1.6.a),

(x
- I I I I I . . .. . .. . ..
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where from (1.6.e)

Thus, 41(x Tsg)e5C(z+?i=i(x)tA as Irl- , and we take e'r'O4IP(. xo)=1
without loss of generality.

Defining

e;= 4t(xg)e', (5.2)

and su ituting it into the scattering equations (1. 1), we can generate an equation

for 0':

Since 0-.0, 0'--, as .- ,,. oo, we expand € and ' in power series in l/:

I gmI
M-0 M=O

Substiuing ' into (5.3), we get a recurrence formula for the f,:

q-1- = i' f.) + ./ o Il.(5.4)
dx q j+k-m

Since +(x, O)=e't', we have ;(xo)-O and g,,,(xo)-O for all m; hence

as -- .

Using the definition of the Bloch eigenfunction,, as well as (5. 1) and (5.4), we can
show that

ajt(r)-Cos MT- I )
,,-o (24g) " T as -" c. (5.5)

From (5.5) we see that

-o (2_ _ _ _ _ _ _

. a (. ,
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is a double zero of I -a4 -0 to all orders of 14r This means that as ao the
highser band size is asymptotically zero to all orders of 1/r ,'MTe contribution to
the potential due to each band is at most rv ~~- '1 and hence from (3.3) it is also
zero to all orders as Ir - c. The above arguments hold only for a C* potential.
since otherwise the conserved quantities 4. may be unbounded, and the asymp-
totic expansion (5.5) is not valid.

EL Mwe periodi focusing cubic Scimrdinge equatioa

The periodic focusing cubic Schrodinger equation (I+) differs from the periodic
defocusing cubic Schrodinger equation in some characteristic ways. One of the
major differences is that the spectra we are looking for in the focusing case are
complex, while in the defocusing case they are real. Most of the spectral
properties given in Part I of this paper are no longer necessarily true here. In
order to use a similar analysis we must make more assumptions which we state
explicitly herein.

1. The direct scattering problem

The associated scattering equations for this case are [3]

axiViqz (6.1~a

3 V--irV= -qW 1 . -(6.1 -b)
ax

As before, we choose

to be one of the eigenfunctions of (6. 1). The second independent eigenfunction is

Expanding #(x+T, r) in team of #(x, r) and ;k(x, r), we have

Evaluating x in (1.2) at xO, we obtain

b~,x)= 0(xo + T), (6.3.b

1*M
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and from the Wronskian relation,

a(r, xo)a(r*, x0) + b', xo)b*(r", x0 ) I. (6.3.c)

We denote by aR, bR, and Vat the real pats of a, b, and V, when is real
(aR =[a(r)+a*(r)]/2 etc.). a1 , b,, and V,1 are the imaginary parts of a, b. and
V, .

We choose the following three spectra (which are slightly different from the
spectra in the defocusing case):

(i) The main spectrum: The main spectrum is composed of the eigenvalues ;
(i- 1,7 .... oo) at least one of whose eigenfunctions is periodic or antiperiodic.
The main spectrum is composed of the roots of 1 -a2 =0. There are two special
properties of ,: (a) (i= 1,2,...) either are real or appear as complex conjugate
pairs (or both). (b) When ' is real, it will be at least a double zero of I -aZ =0.
To prove (a) we use the fact that r' are the roots of I-a =0 and hence

=1. Taking the complex conjugate of this equation, we
have ([a*(r,)+a(i')/2}2 = 1. Thus, r7' is also a root of I -a2 =0. We therefore
conclude that the ; either are real or appear as complex conjugate pairs (or both).
To prove (b) we use the fact that when is real, aR(,), bf( '), and bl(r,) are all
real. From (1.3.c) we get a(r )+a2(r;)+bJG) + bl(r ) - I. Since ai(',)= I. we
have a,(r,)=b()=b,(r:)=0, and upon differentiation of this equation with
respect to ,

=0.

Therefore r, is at least a double zero of -a2=O. For real r, a'( )14l and
hence no unstable band can exist for real r. In this respect, the focusing problem
is different from the defocusing problem. In what follows we divide '; into f, and
r,, where f, is real and is a (at least) double zero of I -a =0. The quantity , is
complex, and therefore it appears in complex conjugate pairs. i.e., as (r', ,).
Moreover, as in the defocusing case, a(r) and b( ) are entire functions of ', and if
the initial condition is real, we can show that a-(- ) a(r). This implies that if
r is an eigenvalue of I -a2 =0, then so is - . The eigenvalues then will appear in
double pairs (r, -r, - ).

(ii) Auxiliary spectrum (I): This is composed of the eigenvalues y,' (i
1,2, .... o) for which *11(xo + T. y 1 )-i¢,(x o + T. y,')=0. From the definition of
* we see that this implies that the -f, are the roots of a, +ib, =0. We divide -t,' into
y and 1. 1, is real and coincides with f, whereas y, is complex.

(iii) Auxiliary spectrum (II): This is composed of the eigenvalues 17, (i=
1,2...) for which #11(x o + 7, 1;)-ia tx o + T,7r,)=0, with 71; the roots of a, +
ibi =0. We divide l, into il, and ,,. ), is real and coincides with f, whereas n, is
complex.

Next, we state explicitly our assumptions for the scattering data of (6. 1).

(a) All the f, are double zeros of 1-a =0. i.e., there are no higher order
zeroes of I -a =0. Exceptional cases are discussed in the appendix.
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(b) All ", j ,are simple zeros of al +ib, =0 and a, +ibR =0, respectively. They
are real and coincide with 4.

(c) All ( , ) are simple zeros of I - a =0 and are complex.
(d) All yi,71i are simple zeros of a, +ib= 0 and a, +ibR= 0, respectively, and

are complex.

2. N-band potential

As in the defocusing problem. by an N-band potential we mean one which has
2N simple roots of -a=O. An N-band potential satisfies the equation

.,=OC 81./8q* =0, where I,,, are the conserved quantities:

I fxo + r(qq._..q.q) dx,(7.Lb)
.xo

2 fxo,,,r(I q 14 -1 q.1') (7. I.c)
( XO

As before, we take the time dependence of the eigenfunction to be

a ,0.. 1 = A -01 + B 2 + 4 + + / O , (7 .2 .a)
at

= C-01 + A0 + X -2 (7.2.b)

To make *1(xo, t, r)= l and #(x o, t, )0 for all time, we require

S=-A(xo, t,, = C(xO, t, ) (7.3)

The consistency of (7.1) and (6.1) leads to ()A(')=-A('), C(r)=
-B(*), and the evolution equation. A(r) and X(r) are purely imaginary when
is real.

The evolution equations that can be solved by the inverse scattering technique
and possess (1.1) as their scattering equations are

m = 0, 1,2..... (7.4)

For each m,.we have the corresponding A. and B.. A. is a polynomial in r" of
order m, and B, is a polynomial in r" of order m- 1. We list the first few A. and3.:

M Evolution equation A. B.
0 iq, = q -i/2 0
1 qt = -q. ir -q
2 iq, +q.. +2qf 2q--0 -2i 2z +ilq(2 iq. +2rq
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woof that q is an N-band potential is the same as given in Part I and
hence omitted. We point out that the 2." simple roots are also the roots of the
polynomial equation

,(-),(- + I( O),-= 0. (7.5)

The N complex y, are the roots of

IA(' - = 0, (7.6.a)

and the N complex i, are the roots of

ILR(A') - (8) = 0, (7.6.b)

where

() - cA,,,(xo, t,), (7.7.a)

l I ( ) = - .cB*(xo, t. ) (7.7.b)

m-O

3. The inverse scattering formula and the
time dependence of the scattering data

Since a and b are entire functions of r, we have the following relations:

N
)2  1l )

( -, = N (8.l.a)
(-a 2) 

'

(a 2N= (8. .b)
II-

Expanding a,,, a,, bR, and b, in terms of power series in 1 as o-c, and
comparing with the coefficients of the terma I/ in (8.1). we obtain

ZN Nqt -at X - X . , (.2a

Sqj=i i , -  ,, (8.2.b)

!2
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Foiowmg Part 1. we can obtain the xo dependence of the scattering data by
shifting the reference point xo to xo +dxO and expandin S the basis eigenfunctions
at x. + dxo in terms of the basis eigenfunctions at xo. We find

= 0. i = 1,2,...,2N, (8.3)

~ I ~ 2 (i-1,+i 2v

, (8.4.b)

j- ,.... N, j= 1, (8

The square roots in the above equations correpond to the positive real parts.
To obtain the time dependence of the scattering data e make use of (7.2).

Hence, 8a/at=o, or

0 , i= z...2v (8.5)

and

aa : 11 - -,,),,J ,-,

i 2iI IN

.~a I. .. ( ... - r_!:, - V (8-...... 6.a)

k*hi
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IN N M 2N

ZI

I il i'1 i1 i-i

- y-l ( -2i Yk+i (8.6.b)

kAbi

j= ,2,..., N.

In order to integrate these equations we first determine a,, dj at t=0 with respect
to various xO. 2 or d, changes sign as y, or i,, reaches the band edge ,

respectively.
We summarize the above results as follows. For an N-band potential we solve

the scattering equations (6.1) to obtain the main spectrum as well as the auxiliary
spectra at t=0 at an arbitrary base point xo. Then we use (8.6) to obtain the
auxiliary spectra at a later time. Finally we use (8.4) to obtain the auxiliary
spectra at various x0 and make use of (8.2) to reconstruct the potential q. The
Abel transformations introduced in Part I of this paper can also be used to
integrate (8.4) and (8.6). In general, an N-band potential has N noncommensurate
periods, and hence q is almost periodic in time. This agrees with the numerical
solution of the periodic cubic Schr~dinger equation (121.

4. ]-band and 2-band Potentia

If we compare Equations (8.2), (8.4), and (8.6) with the corresponding equations
in the defocusing problem, we find little difference between these equations.
However, the geometries of the loci of the motion of these spectra with respect to
xo or t in the two problems are completely different. For simplicity we first
consider the l-band potential. In the defocusing problem we have [from
V.oc.8 1./8q*=0; alternatively we could solve (8.4) with j II

-coq+ic 1 q. = 0. (9.1)

Hencm

q(x) =Aexp(-1x).

- .
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From I1)\rl) -1I(r)l 2o we have

c A, " A, (9.2.a)2c, c

and from -iA(r)+j&(f)0, -i,()+, )= we have

-r A si -Xo0  (92.b)

jxcos Jx (9.2.c)

reSpecively. Using (9.2) as initial values, we can solve the evolution equations of
y' and 71, with respect to time and verify that the solution for all time is

q(x. )Aexp O -. i O )t-2iAz4. (9.3)

Hence,

?| 2C, c C , I ( CO2c.1 _ c Co ) :+Aj(94)

The loci of y, and 17, with respect to time or xo ae shown in Figure 2. We see that
yj and ill move back and forth along a horizontal straight line segment (-A -
co/2c,. A -co/2).

Figm 2.

1t r
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In the focusing problem the differential equation for the 1-band potential is

coq + ic1q. = 0. (9.5)

Hence

q(x) Aexp( iL x). (9.6)

It is straightforward to verify that

C, C,/

is the most general one-band potential.
The various spectra are

7 L C 0 +iA, (9.8.a)

2c, , 0 C, 2
, = - i.c-- Lson-xo -_ t-2A| (9.8.b)

2c*SQkid (c, (c ) +A

The loci of y, and ill are shown in Figure 3. Here , and -q move back and forth
along a vertical straight line segment (-iA -co/2c1 , UA -co/2c,).

The above example suggests that the horizontal band in the defocusing
problem become the vertical band in the focusing problem.

A.

C2

Fiu 3.
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Next, we consider the 2-band problem. In the defocusing case it is qualitatively
the same as for the 1-band problem. We have y, and 7, moving along the
horizontal straight line segment (',, r.), whereas "2 and ,7 move along (i,, ) In
the focming problem, we show that the loci can be totally different from those
suggested by the I-band problem. The differential equation for q(x) is

coq+ 2 tqz -cq. - 2C2 1ql2q = 0. (9.9)

We consider here the special case that q(x) is real, q(x)=v(x). From (9.9) we
requivrel =0, and we take c2 = 1 without loss of generality. Integrating (9.9) once,
we et

[0'(x)1 2 = CoV 2- v4 +,40 , (9.10)

where 40 +co v2 - v' ;-0 to guarantee a real solution.
The solution v(x) of (9.10) can be expressed in terms of an elliptic function

cn(x i) (m is the modulus): v(x)=A cn(Bxlm). The relations between A, h, m,
and Ao are

2,#2( l - M) = 40, (9.11.a)

Co h2 = (2m- ), (9.11.b)

j2 = A2. (9. 1.c)

We now look for the four complex simple roots of I -a =0. From Equation
(7.5) we have

4 + + + o. (9.12)

We get the four roots ( -' -a), which occur in double pairs (as expected):

where

dl= -co8+ - (9.13.b)8

The roots y, and y2 are the roots of A-j =0, Le.,

51 + 2,2-.2Cn(Bxlm). - sn( axjm)dn(x) =o, = 1,2.

(9.14)
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From (9.14), y¥ and y2 are related by y2 = -y . Taking tl =y = +R't and
substituting it into (9.14), we get

2(y.2-,,2) = - io-+2cn(jxjm),2

4ytyR7= A~sn(hxjm)dn(hxjm).

Hence y +y2 = J4rAo +cz/4 and we conclude that -I moves along a circular arc
4

of radius V4o0/4 + c2/16 and y2 moves along a different circular arc of the same
radius

The roots -1 and 42 are the roots of X- p 0, or

2~ n 22cnz(jx Im) + i- - ikl1,cn(Jx Im) 0, i 1,2. (9.15)

From the above equation il and li2 ac related by l2 = -a. Taking 71 =711 +71t

and substituting it into (9.15), we get

2(j -q2) Cn(AXjM) - -21,cn(jxjm),

7, = 2ARc n(h Im).

Hence ij ll~ -irco/2, iLe., we have hyperbolas.
Depending on the value of co, we have three different cases:

Case I: co < 0, m< J, Figure4 (a);
Case 11: co >0, m> ,igure 4(b);
Case M: co =0, m= ,Figure 4(c).

In case IIL "1 =% =0 occurs when cn(&x' m )0 for some x'. In case II,
il =I2 z#0 occurs for some x". At these points the differential equations (8.4)
and (8.6) are singular and the previous analysis must be modified, as we have.,
assumed only simple roots in each band. This demonstrates a significant dif-
ference from the defocusing problem. In that case each y, and % moves within its
own unstable band and hence 1 =12 can not happen for any x and t. In general,
the auxiliary spectra move on curves between , in the focusing problem. This
makes it difficult to approximate an arbitrary periodic potential by an N-band
potential.

Next, we examine the stability of a -band potential with respect to a second
band of perturbations, where the second band is small (I f3 - c If, -1).

The general equation for a 2-band potential q(x) is

cO -+ - + -  0. (9.14.a)

- V, .--_ ,
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V . '.0 "21%

(-IR 4. () I <4 ) > /. (C IR D -./4
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From (7.1) the above equation can be written

q..-2icjq.-cq+2 q I 
2 q = . (9.14.b)

To remove the term -2iclq, we take

q = 4, (9.15.a)

and Equation (9.14b) becomes

4+ +(c? -co)4+ 2141'= -_. (9.16)

Let 4= re', where r is real and positive. Substitute this expression into (9.16):

r.. -r2 + (c -co)r+ 2r3 = 0, (9.17.a)

2re + re" = 0. (9.17.b)

Integrating Equation (9.17.b), we obtain

0e =ar- . (9.18)

Equation (9.17.a) becomes

rx -a 2 r -3 + (c2 -c)r + 2P= 0, (9.19.a)

or

r.2 + aZr- + (c2 co)r 2 + r 4 2S. (9.19.b)

For simplicity we define
2 ,  (9.20)

and Equations (9.18) and (9.19b) can be written

(;.)2 = 8bP-4,3 -4(C -Co); 2 -4a 2, (9.21 .a)

0 = )faP-' dx. (9.21.b)

To calculate the band edges of the above potential, we note that there are two
quantities associated with (9.14.b) that are independent of x:

2ic, Iq 12 - ( q*qx - qq*) = iA', (9.22..a)

colq12 - 1q. I I q14= B'. (9.22.b)
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For the potential (9.17) we readily obtain A' and B':

A' = -24, (9.23.a)

B' = - 2S- 2c!d. (9.23.b)

The band edges are the roots of ,+u(')u*(r")=0. From the defini-
tion of X and I (7.7), we get a fourth order polynomial equation for ':

C++C+ a ' +( L-2c,d+2S =0.

(9.24)

Since we want the 2-band potential to be a small perturbation of the -band
potential we take the four roots to be of the forms

U= , (9.25.a)

r2= -jA, (9.25.b)

r3 
= d -it, (9.25.c)

r, -" d- it, (9.25.d)

with t <1. Comparing (9.24) with (9.25), we can relate A, d with co, c1, 4, and ;:

c, = -d, (9 26.a)

co = 2(A 2 +(2), (9.26.b)

= (A 2 -c 2)d, (9.26.c)

b = A2d2 + A2 2 + d2t 2 - J(A' +j4). (9.26.d)

Substituting the above expressions into Equation (9.21.a), we get

= 8(A 2d2 +dY +AY -JA'-E')-4 3

- 4(d 2 -2A 2 - 2t2)pI - 4d 2 (A2 _C2)2 (9.27)

To obtain the periodic solution of (9.27) we first examine the roots of the right
hand side of (9.27),

( )2 = -4(P-P)(P-P 2)('-P,). (9.28)

I t-
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To order e, we find

r, = -d 2, (9.29.a)

2 = A - 2Ac, (9.29.b)

p3 = A2 + 2AE. (9.29.c)

Then we can write P in explicit form:

P =A 2 - 2Acr +4A-cn2(Vd 2 +.A2 + 2ACxlm). (9.30.a)

Since m=O(P) in (9.30.a), we can approximate cn(xlm) by cosx:

P - A2 + 2Acos2Vdz +A2 x. (9.30.b)

Hence

r -- A + ccos2 d2 '+7x. (9.31)

From (9.21.b),

e Ad(5. sin 2 lda2+A2 X) (9.32)A d+AA2 A

Finally, we obtain an approximation to the 2-band potential of (I+):

q(x) =A +ccos2vrd2 +A2x ______ smn2 2 +A 2x . (9.33)

Next we note that the usual linear stability analysis of the one band potential
would be as follows. Take q(x,t)=Ae2A'(1+a .e(kz* +a -e- ), and
substitute it into the cubic Schrdinger equation (I +). We get

(2A 2 -Q-k 2 )a , +2A2a.. = 0, (9.34.a)

2A 2a , + (2A 2 - k2 + L)a. = 0. (9.34.b)

The above equations give us

02= k2(k 2 -4A). (9.34.c)

I . .... . ......- - - .
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This means that the plane wave solution is stable with respect to perturbations of
wave number k>2A and unstable for k<2A.

It is significant that the solution (9.33) has a wave number 2Vd-T which is
always bigger than 2A. In the limit d--*0, the 2-band potential (9.33) corresponds
to the wave number 2A. Hence the potential (9.33) should be stable according to
linear stability analysis.

We now study the stability of the potential with initial condition (9.33) via the
analysis given in this paper. Let us first determine y,, Y2. 71, 1,2 a1, *2, d,, and d2
at t=O. Solving the equation A-li, =0, we obtain y, and y2:

M 2iFA 2  sin 2vT2x, (9.35.a)

y2= d+ "i' sin2d +A2x +-cos2 +A'x
d +A d

itA 2
+ sin2Fdl+7x. (9.35.b)

To determine a2, we make use of (8.4.a) and frind at t-0

a 3= -1 when Lx < 21r or 0 4 2a2 +.42 x <2,n =-1 when -]-- 2Ax<mr 2a+Ax!
- ~2 2'

(9.35.c)
31ra2= ~ whe !2a+A z x< 2 "

2  I when 2 < (9.35.d)

Similarly, we solve the equation X -=0 to obtain 71 and ii?:

,q = i.4, (9.36.a)

112 = d + itcos2Fdld+AZ. (9.36.b)

To determine J2 we make use of Equation (8.4.b) and find

62- -1. when 0 e 2F/d2 +A 2 x < w, (9.37.a)

62= 1 when r 2d 2-+ x < 2r. (9.37.b)
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Next, consider the time dependence of the auxiliary spectra. We write the
auxiliary spectra in the following form:

y, = -A sin(2A 2t)+ r,1 , (9.38.a)

72 = d+ y 2 , (9.38.b)

ill = UA cos(2A2r) + 
e ,, (9.38.c)

12 = d+ t7 21, (9.38.d)

where c 0 corresponds to the I-band solution. y,,, y21, 7,1 and q2, are functions
of x and :, and their values at t=0 and at various x are given by (9.35). The
stability analysis corresponds to determining when yt,, y2T,71,,, and 1121 grow

without bound. We note that y , and y2, are of order l/d whereas qj, 0 and

112 =icos2/d7_2 -i at t=0.
From the equation (8.6) for dy2 /dt and d"2 /dt we obtain to order (

___ = +A2)y2 - d+A
2 )

d' =Qa2 dVf(l +-T2
2 )(d2 + , i 2

2 ( 1 (9.39.&)di d+iAsin(2A2r) , (9.39.a)

__ i = Qdld (l +n221)(dA2 + )- 21A2( l  ( )(d 2  ) A)
d-iAcos(2A2t) (9.39.b)

From the equations for d'y,/dI and d1, /dt we obtain a, and 6,:

3,t

*I= -1 when 0 4 2A21 <f or - c% 2A 2r < 2', (9.40.a)
2 2

at= I when C 2AZt< 3 , (9.40.b)

2 (940b

at= -1 when 0 2A 21 < r, (9.41.a)

61 I when i r 2A 2, < 2r. (9.41.b)

I

_ _" _ _n_,_,__ _ _ _ _ _ _
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We can integrate Equations (9.39.a) and (9.39.b) directly, and we find

Y21 (o)+l + ;21)(o)

X c - v2 an-I d2 + tan(2A2t))
+A2/

x d2 +A co(2At) jd 2 +7 -A

\ d2 + A cos(2A 2 t /d 2 +A 2 + A

(9.42.a)

_ _,(t)+__+,_ __ (- d2 +A2 +A sin(2t:)

21o) d2 +A2 -A sin(2A2t)

x d e 4 d2d +42 t-' 2

X a-I d ta(2)I (9.42.b)

From Equation (9.42) we find 712t and y~l are bounded for all time for rite d.
The only instability that could possibly occur is the case where d-+0 and
2A 2t--*3r/2. Equations (9.39) and (9.42) are valid when -Cd2 as d-0. In this
case we find

Y210=O) + Il +y2 (=O) - LAexp(2Vjd2 +4)

when 0 " 2 2ox < 2r, (9.43.a)
2 2

and

2 1(t0) + ,l+y',(t=O) -ZAd(cos21d2+-Ax-isin2d2+-Ax)

when _____<_ .(94362 2

Ll
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It is straightforward to verify that yf2 (t)-±i as 2A 2 t-.*v/2 and hence

j I +y(t) -.*0 as 2A 2t-*r/2. a will thus change sip as 2A 2t-ir/2. We
conclude that at time 2A 2t=3r/2, o behaves as

3w I
* =-1 when +' or ,

(9.44.a)

0 = whn i 4 2V +z <(9.44.b)

We note that since *2(t) changes sign at t=r/4A2 , the relevant equation for
f2, in the neighborhood of 2A2t --3w/2 is

Jd2~A + cs(A)

jd-+7A -A COS(2A 2t)

Xexp{4i 2dV7(t-ir

where a is given in (9.44). Since y2l(t: /4A 2 ),..i, we find that y2,(t,- 3r/4A')
SlId and thus Y2 =d+ O(e/d). Similar arguments hold for 12, and there is no

instability associated with them. We conclude that a 1-band potential is stable
with respect to any small 2-band perturbation. This agrees with the linear stability
analysis (9.34.c), since a 2-band perturbation has a large enough wave number.

S. DiL ion of the focusng cae

In Part II of this paper we have given a method to integrate the N-band potential
(i.e., the periodic potential that has 2N simple roots of I -a, =0) under suitable
conditions on the scattering data. The method is the same as given in Part I; i.e.,
the original nonlinear partial differential equation is replaced by 2N coupled
nonlinear ordinary differential equations provided the spectra have certain well-behaved properties. Although we have shown explicitly that a 1-band potential is
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stable with respect to any 2-band perturbation, we have not proven stability in
SeneraL

Appendix

(a) (i= 12,.... oo) are re .

The proof is based on the fact that the operator in (1.1) is Hermitian:

V + X) - + irvx)(, q 'C2-q* +C.G.

0 ,

or

+i(-) f X+ (tol(x, ')12 +7l(x, C)i2) dr 0.

Evaluate at r,; the int term vanishes due to the periodicity or antiperiodicity
of the eipnfunctions. Since

fX.+T(Io,(x ')I2 +1o72(x, ')I') dx •0,

we conclude L' =", or cc (i= 1,2.... ) are real.
(b) *f, (or 7() (i-1, 2, ... , oo) ar re.

Define
Y(, x) = oilR -V , (A. .a)

Z(Q,x) = oil + V21. (A.l.b)

Equations (1.1) can be written

Mx+ qtZ - q1f , (A.2a)az

ay-
x -z= -qtY-qZ, (A.2.b)

where Z(xo, y,')Z(xo+T, yfl=0 from the definition of vI.

'I
_ _ _ _ _
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Using (A.2), it is straishtforward to show

(-z-yz)+( r-r)( yj2 +IZ12) =0;

hence,

Evaluate r at y' the second term in the above equation vanishes. Since

fZ.4T(Iy1
2+IZI )dx>O (Y:1 at x~xo), we conclude that 7/:?/* i.e., ?'

(i= 1,2,...) are real.

(c) At any , (i 1,2,...) af :bR =b, =0.

From (A.2) we choose two sets of solutions with the initial conditions

,(x0o)=} I -d and (Xo)= 0

Yl~xo)= Y2(x) =

From (a/axXZIY2 -Z 2 YI)=0 we obtain

Z,(X) Y2(X) - Z2 (X) Y(X) = Z 1(XO) Y(XO) - Z2 (XO) Y1(XO) =

Hence.,
HZ,

y. ) and (c
me two sets of linearly independent solutions.

We expand the Bloch eigenfuncon in terms of ( an d  2

We can als expand Zx T) inta of (Z,(x) 0 1,2), du tothYw" .)z,(x+T) Y,(x)
,enriodicity of the potentiaL The coefficients of expansion can be evaluated by
mtaing x-xo. We then have

(Z,(x+T) \ = z o ( + (o(Z( +, x)z2)

Y(x+ T)j Zlx )Y 1 (X) +Y(oT~Y 2(x) J

7-"I
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and similary

Z2X+T) \ '(x) (Z 2(X

~Y,(x+T)) Z2 x0 T l i(x) )+ 2 x#~Y2() J
Taus

*I'x Z)2(x)'

02(x +T)) 4,2(x))C Y(x)) + Yz(x))

(j Z1(x+T) f + 2(xTSY(x+T)) +C2(x + T))

(Z1(Xo+ T)ZI(X) + Y(XO + )Z2(X)

=~Z(XO + T)I W)+ Y(XO +) 2(X)

+ C2 (Z2(x + T) Y(x) + Y(xo + T) 2(x))

C,(Zt(xo +T)-A)+ c2Z2(xo +T) = 0,

CjYl(Xo +T) + C2(Y2(X + T) -X) =0.

For noutriria C, and C2 we require

\2 -[ZI(Xo + T) + Y2(XO + T)]

+ Z, (xo +T) Y2( x + T) -Z 2(xo + T) Y1(x +Tr) 0 0.

Using the fact that ZI(x + T)Y 2(x + T)-Z2(xo +T)YI(xo +T) . we have

X2 [I(o T + 2(O T] +1 0.

Hence from (1.6.e)

at=Z,(xo + T.r) +Y2(xo +T,)

Defining

=t at a at



The Periodic Cubic Sc rOdinger EQuation 149

and differentiating (A.2) with respect to r, we get

8z + y - qx + qy = -Y, (A.3.a)

ay 1z y +q= Z. (A.3.b)ax qy--q

() satisfies the same equation as does (Z) except that there is a forcing term
on the right hand side. Take z=z,, y=y,, Y= Y, Z=Z, in (A.3) and expand

(~)in terms of y. ) and ()Webain

Z1 IZI + c2Z2,

Yl cly1 + c2Y2,

where c1 and c2 are functions of x. From the variation of parameters in the
differential equation we have

cl= - (YY+Z 1Z2)dx+clo,
xo

2f ( y,2 + Z2) dX +C2.

Evaluating x at x o, we have clo =z(xo)=O, c20 =y,(xo)=O. Then

ZI(x) =(LYY ZZ))Zx)++ y2) dX)Z 2(X),

(A.4.a)

y1x =(-fYY 2 ZZ:d)Y() (f,(z? I 2dx) Y2(x).

(A.4.b)

By the same reasoning,

(A.5 .a)

r(jz 2i-) dx)Y(x) + (~ZZ 2 + Y, Y2).dx)

(A.S b)
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Diferentiatizig a R with respect to r.

= 1- zt(XO+Td0)+yt(xo +T, r)

+ O z2( (X0 + T. r)fX ~

'tO

-~ ~ 2' x ,~ XO+7 
1 *Z)

+Y2(xo+T,0)f't 4 1 kZ1'Z 2 Y~)dx.
'tO

We assume for the present that Zz(xo + T, 0, and obtain

Y ,(x + T , ) sp Z 2 (x 0 +) ( ) - ( 1 x + T , ) - ( + T , )1

41 Z2(X + T,~)

where

SPZDXO+Tr) I if Zf,(x 0 +T,r)>O,

-1if Z 0(x 0 +T,r)<O.

To evaluate da R/ dt we write

YAX +I,0 '~ x S 2X ,Z 2(x + T, )IfZ2d

+ 3P Z2(X + T,)

x [ Z1 (X0 + T Y2(x 0 + T,)] pO+T Z2dx

and

Z2(xo + T, xo+ rZidX sp Z2(- T. )*Z 2(xo +- T,

X f'to rZ2dx [sin Z2(xo + T, )z



After some straightfar: calculatio we51ai

-Z 2(xO+T,) ~ 2(xo +T, Z2

+fo TZ(xo +T, Y 2(xo , ,

2VI Z2 (xo,+ T.~

spnZ 2 (x + T, T)Z 2 (xo +T. rl Y dx

aIfxo+T OfO(y22z ) dx (A.6)

We now prove Zz(xo+T.r,)=0. At r~, we have I-aj(,)=O and
daR/drjf. =0. Assuming Z2(xo + Tf*, 'we can use (A.6) to obtain daR/dr'if:

dalt I..sp Z2(x + T, f)

[fx.+r Z 1(xO+T, ) -y2 + T, fi) Z

h0 \ V z/Z 2(X + T,t,)I
2

sg Z2x _ ),f_ j _ _T~,II d

2y'IZ2(xo±T.f,)I
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The factor in the bracket is nevr less than zero. It is zero only when

Y'2) = 2Z,(xo + T) (Y )

(Z2 Z,(XO+T)-y2(XO+T)(Z ,

but this cannot happen, since and ( are linearly independent. We

then get daR/d~jI 00, which contradicts the fact that da/dl, =0. We have
thus proved that Z2(xo + T, f) = 0.

Therefore 4 is also a root of the family -f', and ", coincides with . Similarly,
is also a root of -n, and 4, coincides with f,. At f, a, +b, =0, a, +bj =0, l1.
Hence we conclude that at 4, a, =b, =b, =b =0.

(d) yf(nj) (i=1,2, .... oo) are simple roots.

From (A.S), z(xo +r",)= f/; (Y21 + Z21) dxjZ,(xo + 7", '). Since -, is a
root of Z2, we have Z,(x o + T, -,')Y2(xo + T, -,f)= 1, which implies that Z,(xo +
T, "fi),O. Since fg 7+ r(Y2

2 + Z2) dx>0, we have z2(x 0 + T, yj)00. We thus con-
clude f,' is a simple root of Z2(xo +T)=0.

(e) C is either a simple or a double root of I -a =0.

To prove the above statement we need to prove that at f,, dzaa/drll -00. We
only prove'it for the periodic band edges (c); the proof for the antiperiodic band
edges follows similarly.

First we claim that Y(x o + T, )=0. The proof is exactly the same as given in
(I11. At f,

Z,(xo +T, 4) + 2(xo +T,) 2, (A.7.a)

Z2(xo + T, f,) =0. (A.7.b)

Hence,

z,(xo+T, ,)Y,(o+T,f,)-Zz(xo+T,,)Y,(x 0o+T,f,)= 1. (A.8)

From (A.7) and (A.8) we obtain

z,(xo+ T,41) Y2(xo + T,) 1.

t • - -,t 4
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Hence,

z,(x 0+,)- fxo+(Zz+y)dx
X0

y(x + T,) f, XO +( yl+ Z2) dX

Y2(X + T, ?) Jxo~~z Y )

2 2jfO'ZIZ2 + YIY 2)dxj
Xe

f~+(42 + Y2 ) d -O(Z, + Y12) dx O .
XO 0

The last inequality is the Cauchy-Schwan inequality. it is clear that the equality
sign occurs when

with c a constant. This can never happen, since ()and ( Z) are linearly.

indpedet. Hence we have d2an/dr 2C <0, and 2hsterosof1-j= .

either simple or double. tu h ot fI-n= r

(f) Theu is only one y1 (or 71,) in each wistable band.

First we prove that there will be at least one y, in each unstable band. At two
adjacet band edges r, and r,, that are both periodic or antipeiodic, daA/dtirC,.
and dan/drj,.,q. have differern signs. From (A6) this means that z 2(xo + T, ~
and Z2(xo + T, f,+ ) have different signs. From continuity there must be a point
*/, in between t, and Cj such that Z2(x + T, y)0. We thus proved that there
wiflbe at least one yin each unstable band.

Next wt; prove that there will be at most one y, in each unstable band. At *
Z2(XO +T, 7) 0. From Y2(X + T Y#)Z(X + TIf) - Y(xO +r, Yi)Z 2(X + T, 7)

=1, we have

Y2(X + T, Yd

Hirc-
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and

2a,(y,) = Y2(xo + T, YI) + Z(xo +T,y

Y2(xO+T,+) Y2(x 0 +T.y,)

Hence,

It is clear that Y2(xo + T, -,) can have only a definite sign in each unstable band.
Yz(xo + T, v,)>o if at(y)> 1, and Y2(xo + T, y,)<0 it aR(y,)< - 1.

From (A.5),

:2(o Ty= ZL(xO +T, yi)O 22(Y+ Z2')dx
- fxo4T z

2 (xo+T,y,) - 2°

Since the integral is positive, this implies that z2(xo+T,y,1) can only have a
definite sign in each unstable band, so that Z2(x o + T, yj) is monotonic in one
band. This proves that there will be at most one y, in each unstable band.

(g) daRd#O for atl< 1.
Consider a periodic band edge r,. If at t, a(,)= I and da./d I ; <0, then

at(t) is a decreasing function of " for r'; < '< i + a where a is a small positive
number. If at r,, aa(r)-l and daRt/drtlc=O, then a(t(t) is still a decreasing
unction of C" for < <'+a where a is a small positive number, since

a;(')<0. Now there exists a p* (10*<r,) such that l>a(L*)>-l. We show
that da*/ '1d,.,. -00:

4(4a(p-, i] = [Z,(x0 + T, p)- Y2(X0 +T, ;*)]2

+ 4Z2(xo + T, A*) Y1 (xO + T, j')

<o0 [since -ltaot(jA)<lj.

Hence Z2(x o -4- T, A*)Y(x o + T, p)<0, so that Z2(x o + T, p*)a#0. From (A.6),
da,/dtl,. 00'. Thus da/drl,,. <0 in any open interval r <r<l,* where I >
aR(.u*)> - 1; this completes the proof.

(h) a(f) and b(f) am entire fitions of .

It has been shown in [I] that a,(C) and b(r) are entire functions of r for the
cubic SchrOdinger equation on the infinite interval when q=O as [xl>M (M is
some positive constant). The Jost functions (4', o', 4", 4") and al(r) and b,(r) are

4..
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defined as follows:

0 ~ as x - - o
1'(x, )~e-A (1) as x- -oo,

#'( = al( ); (x,8) +b,(. ),4"(x, ).

To obtain a(r) and b(') in the periodic problem it would be sufficient to solve

(1.1) with the following potential:

q(x)=O for x>xo+T and x<x o,

q(x) = given periodic potential

for xo  x xo +T. (A.9)

The reason is a #x)andx) x for th e potenial (A.9) will be the same as the
#(x) and #(x) for the periodic potential in the interval xo 4x gxo + T. Hence.
we shall obtain the same a(r') and b(r) for potential (A.9) as we do for the given
periodic potential. It is straightforward to show that a(. ) and b(r) are related to
a,(r) and b,(r) as follows:

a(r) = e-'ra,(r), (A.IO.a)

b(Q) = e,,(xo~r'b,(t). (A.lO.b)

Since a,( ) and b,(r) are entire functions, we conclude that a() and b(r) are also
entire functions.

It has been shown in [1) that if q is real, a,( )fa'(-i). From (A.lO.a) we find
that a(r)=a*(-r*). Thus, the main spectrum appears in positive and negative

{ II T,)=ak.sV-,. o-C,<4N- 1, Nv;w2.

We can prove this identity by using the residue theorem:

! y* dy I yk dy

sJ" (-I)H-I , i-I (-,i I fi_

. .. - . - , -. : • - . - ,' -9,1-
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where C is a closed contour including all y., and 0 is a cloed circle with center at
the origin of the y plane and with infinite radius (R - oc). Then

l f r hRk4I1e1(k+1)idf
2ii IN 2ri RNeINi

iI

(0 if k<N- 1,
"I if k=N-1.

Hence

Y, , = 8k _l, 04k4,A-1, N;;P2.

j= I ,.(_,--fl)5
N v

The above identity is true for N= I and N--2. Assuming it is true for N, we
prove it also true for N+ 1:

NsI N+6 N+Ti "I -- "? -- d______

1j N4

1fN+ I

(Yjf Ofj - fl)

IV N

NN NI

I I -J + Y ?.

j l j i

We have thus proved the identity by induction.

(k) In the/focimng case not all ,are double :ero: and not all ,are smnple zeros
of I _a2 0.,I i

N +
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We work out one example to show that C, can be a higher order zero.
Consider on 2-band potential satisfying the differential equation

oq + 2icq, - c€q,. - 2c 2q2q" = 0 (A.l 1)

(according to ,.c8./8q*=0). A and p can be calculated by using (7.3):

X(r) = jco + 2V c, + c(2 2 -i q 12),

14(t ;) = c ,q" + icj2-Cx- ( x,) - 2rc~q.( xo) .

From (A.l1) there are two quantities independent of x which are related to the

roots of l-a' =0:

2k, jqj - cz(q'q -qq) = i', (A.12.a)

COIql 2 -1q. 1 2 - c 2Iq" - '. (A. 12.b)

Then the complex roots of l-:a2 =0 can be calculated by using (7.5): -

2c2 241
C2 2)) 2C 2'

+-L ( +2cA'-CB' =. (A.13)

Therefore, if there is a pair of complex double roots ( where ', =r +ir,
then (A.13) can be written as ( ( )2 =0, or as

" +'R 2 + (r', +',) - 4 lrj, + 2'( ' +,) -4tr,(?,, +r',)

Comparing the above equation with (A.13), we find

4 , I= -2C 1 /C2 ,

4r2S + 2(rl +r2, = '0 +'
2c:4

-4rn(r?. +?, = 2 + C-O.I
2c2  2C'

- -! . . . . - -.

(r •r )2 1 • m2 ,A -c
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Solvig the four equations, we have

' A'=0, 8'=0.
2C2  4c

We therefore conclude that a complex double zero is possible and will occur in
the 2-band case if A'0, B'-0, and c0c 2 -c >0. Also, if A'=0, B'=O, and
¢oc2 =C2, we will have a real quadruple zero of -ai =0.
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REMARKS ON NONLINEAR EVOLUTION EQUATIONS AND THE INVERSE SCATTERING

TRANSFORM

Mark J. Ablowitz

Department of Mathematics and Computer Science
Clarkson College of Technology
Potsdam, N.Y. 13676

I. INTRODUCTION

In recent years there has been considerable attention devoted
to a new and rapidly developing area of mathematical physics, namely
the Inverse Scattering Transform (I.S.T. for short). This method,
has allowed us to solve certain physically interesting nonlinear
evolution equations. By now there are a number of review articles
[for example, see Scott et al, 1973; Miura, 1976; Ablowitz, 1978] on
thIs subject as well as some new books (for example, see Zakharov
et al, 1980; Ablowitz and Segur, to appear], all of which contain
numerous references.

At this time there are quite a few areas of current interest.
Some of these are the following:

"Classical" results and methods: Namely, solitons; direct and
inverse scattering; direct methods for finding solutions via Hirota's
bilinear forms or direct operations on Gel'fand-Levitan-Marchenko
Integral equations; asymptotic solutions as Iti * -; prolongation
structures; periodic and other types of boundary conditions (not the

L J - , . .. ... . .... .
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doubly infinite line); perturbations; discretizations; physical
applications; numerical simulations; etc.

Alternative formulations of inverse scattering via Riemann-
Hilbert Problems [see Zakharov at al, 1980; Zakharov and Shabat,
1979; Zakharov and Mikhailov, 1978).

Multidimensional problems: Scattering and inverse scattering
problems; some multidimensional nonlinear evolution equations
solvable by I.S.T. are the Kadomstev-Petviashvilli equation, Davey-
Stewartson equation, three wave equations, self-dual Yang-Mills
equation and others [for example, see Zakharov et al, 1980; Ablowitz
and Segur, to appear; Zakharov and Manakov, 1979; Kaup, 1980;
Proc. of Joint U.S.-U.S.S.R. Conf. on Soliton Theory, 1979; Zakh,-ov
and Manaxov (Crete Conference)].

Ordinary differential equations of Painlevi type; monoirom
preserving deformations [for example, see Ablowitz et al, 1978;
Sato et al, 1977; Flashka and Newell, to appear].

Direct and inverse scattering problems associated with cart
nonlinear singular Integro-differential equations, namely the
Intermediate Long-Wave equation and Benjamin-Ono equation, ESatsuma
et al, 1979; Satsuma and Ablowitz, 1980; Kodama at al,' to be published;
Nakamura, 1979; Bock and Kruskal, 1979).

In this lecture I intend to review some of the results associated
with certain continuous and discrete (differential-difference, partial
difference) nonlinear evolution equations solvable by inverse

scattering.

II. EXAMPLES USING THE NONLINEAR SCHRODINGER EQUATION

The prototype equations we will study are for the nonlinear
Schrodinger (NLS) equation.

(a) Partial differential equation,

iUt - U. ±2U2U*  (2.1)

(U* is the complex conjugate of U).

(b) Differential-difference equations,

iUnt (Un+iI-2Un) U U (Un++Un. (2.2)

-- ) - . ,
iax?
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(c) Partial-difference equations,

a nT + n A -TT (20
at 2(Ax) + . k 1n n-1 k

*F l m+1 n a .Lm*]r2ml r An+ 2Um ,JUm* Tr

+ um9t +un+l*Ua+1) + um+1 (U *.J4m ~I

n+1 n 1

~U, S ~ . (2.3)

where

K +A) R kmk

Sk ~kiU~*2+Um-*

Each of these equations has solitons and an infinite number of con-
served quantities, and is solvable by linear integral (for continuous
cases) or sumation (for discrete cases) equations. Each of the

results for the discrete equation relax properly to the continuum
limit as ax-O and At-0 (in the partial difference case). It should
be stressed that these are only prototype results. In priacipie one
may get analogous results associated with aLy continuous equation
(e.g., Korteveg-deVries (KdV), modified Korteweg-deVries, etc.).
We also remark that recently we have carried out some numerical
simulations using Eq. (2.3) as a difference approximation of Eq. (2.1)
and have found it to be very accurate and efficient [Taha and
Ablowitz, 1980).

The basic point of view is to work with the associated linear
scattering problem and its respective discretizations. Namely, for
some partial differential equations, such as (2.1), the associated
scattering problem is:

vlX M -i;V +qv.
(2.4)

V = iCV2+rV

- ... 2 1I-- - - i -
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and for differential-difference and partial-difference equations,
such as (2.2), (2.3):

V -n+I a zVinV2n

1 (2.5)
V2n+l = ; z + n l

(% - &x%, R a Ax)

Following the methods outlined in Ablowitz [1978] and Ablowitz
and Segur [to appearj one can find classes of nonlinear evolution
equations (both continuous associated with (2.4) and discrete asso-
ciated with (2.5) where each equation has solitons, an infinite
number of conserved quantities, and is solvable by I.S.T.

Briefly, the main results may be summarized as follows:

(a) For the continuous problem, from initial conditions we may
calculate:

F(x) 1 b(k.O)e-i(kx' (2k)t) dk

N - x-(2 t)
C, (2.6a)

where w(k) is the linearized dispersion relation, obtained by
seeking solutions of the form

u i (kx -wt )

For example, in the ULS equation w(k) = -k 2 , and from (2.4),

(b(k,O), (C (0), I

are the required scattering data [for example, see Ablowits,
1978; Ablowitz and Segur, to appear]. If we can solve the
linear integral equation (y> x)

K(x,y)-F(x+y) t K(x,s)F*(s+z) F (z+y)dzds - 0 , (2.6b)

then U a r - q is given by

U(x,t) - ± 2K*(x,x) . (2.6c)

. . . .. .. ... .. .
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(b) For the discrete problem, the results may be sumarized as

follows. From the initial data we must calculate:

-~n b(z;t/m):n-ldz-EC (t/U~znl (2.7a)
2w.

where

S-iw(z2)t differential-difference

b(z;t/m) - b(z;0) partial-difference

I
i e-iw(z2 It

C1(t/m) = C (0)

From (2.5) the functions tb(z,O), (C (0), zj~j.1}

are the required scattering data. Then we mst solve
the linear simation equation (E> n)

c(n,t)-F(n+) ± K ,c(n,n')F*(d"+n')F(n'+L) - 0 (2.7b)

n' ,n".n+

and find the solution (U. = R /Ax

U ± K*(n,n+i)/Ax (2.7c)

Since the details of soliton calculations, conserved quantities,
direct and inverse scattering are worked out in Ablovitz (1978],

4blowt~z and Segur (to appaar] and Zakharov et al [1980), I will not
pursue these matters further here.

111. THE INTEmIZDTATE LONG-WAVE EQUATION

In the remaining portion of these lectures I wish to make some
coments on a problem I mentioned earlier. This concerns very
recent work we have been doing on the intermediate long wave (I.L.W.)
equation, namely,

Ut + 2UU + Ux /+(U=) - 0 , (3.1)

II

where

28 28
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and represents the Cauchy principal value integral. Equation

(3.1) is a nonlinear singular integro-differential equation. As
8 - 0 we have the KdV equation,

U+2UU+ .U - 0 (3.2)

t x 3 mx

and as 8 we have the Benjamin-Ono equation

Ut +Ztx +H(Uxx) - 0 , (3.3)

where

R (U) - __

is the usual Hilbert transform. Thus it is intermediate between two
important equations. Physically speaking, it has been derived in
the context of long internal waves in a stratified fluid [see
Joseph,' 1977; Kubota et al, 1978).

Recently it has been shown that there are solitons, an infinite
number of conserved quantities, a Backlund transform, an associated

novel type of linear scattering problem, and solutions via linear
"el'fand-Levitan-Harchenko type integral equations (see Satsuma
et al, 1979; Satsuma and Ablovitz, 1980; Kodama at al, to be published,

Nakamura, 1979; Bock and Kruskal, 1979; and associated references).

I shall only mention the basic results here.

To appreciate the novelty of the scattering problem, we should

recall the following Plemelj formulae associated with the operator
t. Namely let *t (x) be the boundary values of certain functions

*±(z) analytic in horizontal strips of width 26 (W+(z) analytic for
0 <I= <26, *-(z) analytic for - 26 < az < 0) and periodically
extended, namely,

+(X) ~ -Ji coth -I (E -0 u (Od - (i+t)u(x)
Z+O 2 -6 26

(3.4a)

*(X) a lia I coth -L (C-z) u ()d - (-i+T) u (x)
Imz+O 25 j 26

(3.4bN

By periodicity *-(x) - *+ (x+21). The scattering problem and
associated time dependence is given by

i'I
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i, + (u-)+= (3.5)

iv' - (u~)v' * 4-
t x

i,% +~ 2i( ,+*)*,x+v +- C(iT~ )Ux+v] ,D - 0 C3.6)

where X,1,v are constants appropriately defined by the Jostl functions.

Some of the main points to note are the following:

(a) Equation (3.5) is interpreted as a differential Rismann-Hilbart
problem. For finite 8 it also is a differential-difference
(for complex x) equation.

(b) Compatibility of (3.5) and (3.6) yields the I.L.W. equation
(3.1).

(c) As 8 - 0 all results associated with KdV and the Schr~dinger,
scattering problem are recovered.

(d) The following Gal'fand-Levitan equation produces the solution
of the I.L.W. equation

K(x.y)+F(xY) + X(x,s)F(s,y)ds 0 0, (y> x)

where,

u(x) (xx)-(xX)),

Tu(x) -(K4+(x,x)+.C(xx))

K(x,y) = K(x+216,y+2iS) , (3.7)

and F(x,y) satisfies,

ia- W + ) (xy)+(i-43-")F(xy) 0 O (3.8s)

1.7x 2d8 y 26

L2F - (Wt +32-32 )r(Xy) _ 0. (3.8b)

N-soliton solutions can be constructed by assuming exponential
solutions for P, i.e.,

4N
F(x,y) E t C (t)oxp(i;' 1 x+i+ y) (3.9)

- ,, -
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where1

ili I c I ot2 II6 -..)

U = cosh2K(X" " 0 (t))+cos2I6 ,(3.10)

w e x OCt) - (2ii) 11n(C1Ct)/2e1C)

it should be remarked that the analy~i±cal scattering and
inverse scattering analysis yields an axlicit representation b.u..
F(x,y) [see Kodam.at eal.to be published;

+ E C t~texp(ic- X~C+y (3.11)

tol

where

b(kt) - b(kO)ep(-4ik(kcoth2k+. ))

a(kt) - a(k)

C t) - ib(kinC,)/(k uiK)L
These results are valid for given 8 and uazcju(x,o)I chosen small
enough. When 6-- (the Benjazin-Ona limit) now singularities may
appear. We are presently investigating this situation.
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1. INTRODUCTION

The use of the celebrated Gel'fand-Levitan-Marchenko
(GLM) equation E 1 ] for both obtaining potentials of the
Schr6dinger scattering problem as well as for solving the
initial value problem of the Korteweg-deVries (KdV) equa-
tion [ 2 1 has been well established. However, in spite of
its wide applicability the GLM equation has certain limi-
tations. Namely it characterizes only those potentials-
solutions which decay fast enough as IxH' 1 3 3. The follow-
ing two well known examples readily illustrate the above
point:

i) Consider the problem of finding solutions of the

KdV ut+6uux+uxxx=0 which decay like 0(12) as Ixl---. These
x

solutions are outside the range of applicability of the GLM
equation. Ablowitz and Cornille E 4 3 analyzed such solu-
tions by "perturbing" the GLM equation around uo=- 2/x2 . u0

is a solution of KdV (the degenerate solutions of this
"perturbed" GLM equation are the so-called quasi-solitons).
Similar "perturbed" GLM equations can be found by perturb-
ing around any "natural state" of the KdV [51.

ii) Consider the problem of finding the self-similar
solutions of the KdV (i.e. the solutions of KdV invariant
under a scaling transformation). These solutions satisfy a
third order ODE; this ODE is of the Painlevg type and its
first integral is related, through a one to one map, to
Painlevg II [6 3. Using the ideas of Ablowitz and Segur [71
one may obtain, via the GLM equation (properly scaled),
a one parameter family of solutions of this third order ODE.
How can one obtain a three parameter family of solutions?
It is quite clear that one needs a more general equation
than the GLM equation.

Recently [8 3 we have proposed such a generalization
to the GLM equation. Furthermore, we have used this genera-
lized equation to characterize a three parameter family of
solutions of the ODE mentioned in ii) above, through a system

-- m , , i .
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of Fredholm equations E 8 . The sense in which our equa-
tion provides a generalization to the GLM equation can be
best understood by recalling the "direct approach" method
of Zakharov and Shabat [9): These authors, bypassing the
connection with inverse scattering and using certain
linear operators, proved directly that solutions of the GLM
equation (i.e. solutions of a linear integral equation of
the Freholm type) are also solutions of the KdV equation.
Similarly, we have proved directly that solutions of a
rather general linear integral equation (which in some cases
is a singular integral equation) are also solutions of the
KdV equation. The generality of our equation results from
the fact that it involves an arbitrary measure-contour. Actually
for a specific choice of the measure-contour it reduces to
the so-called k-space equation recently introduced by Newton
£10), and shown to be equivalent to the GLM equation.

It should be noted that "in the linear limit our approach
yields the general solution of the underlying linear equation
u +u =0 (this is a consequence of the so-called Ehrenpreis
phn~ le). This should be contrasted with the linear limit
of the GLM equation which yield only those solutions of
U +u =0 which are obtained through the Fourier transform.
I tHfg sense, our equation can be thought of as the analogue
of a generalized transform for solving a nonlinear PDE, in
the same way that the GLM equation corresponds to the Fourier
transform.

In this note we
a) present a direct proof of our new linearization

and comment on its linear limit;
b) present the analogous generalization to the

"perturbed" GLM equation discussed in i) above.

2. THE MAIN RESULTS

Theorem 1

Let ¢(k,x,t) be a solution of

M4# *(k;x t)+iei (kx+k3 t )$ O (I;x 't )  lkx+k3t)
'L- L+k

Then
(2) u - fL (k;x,t)d (k)

L
solves the KdV equation

(3) u t+6uux+uxxx = 0.

Before proving this result we make the following remarks.

- ' : ... ... ...- ,• lllW PM-
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REMARKS

1. The measure dC(£) and contour L above are quite
arbitrary. The only assumption made is that equation (1)
is well defined in the sense that one can interchange
differentiations w.r.t. x and t and the integral along L.

2. If the nonlinearity is absent then equation (1)

yields * = exp(i(kx+k 3t)). Hence equation (2) implies

(4) u L =e i (kx+k 3 t) dC(k).L

This is the general solution (Ehrenpreis principle) of the
linear equation:

(5) ut+uxxx = 0.

3. *(k;x,t) is directly related to the Schr6dinger
eigenvalue problem

(6) 0 xx+u-ikx = 0.

Let * = iexp( (kx+k t)) and equation (6) reduces to the
usual Schr6dinger Iquation

(7) '+( (h~) +u)'p = 0.

4. For the proof, we also assume that the homogeneous
equation corresponding to (1) has only the trivial solution.

PROOF

Proving that u as defined by (2) solves the KdV is
(equivalent to proving that 0 satisfies

(8) "(4) 0 t+0xxx- 3 ( x(1)d (Z))0x = 0.
L

However, applying the operator Bt +a to (1) one easily

establishes that

(9) MQ = 3k[io xx(+kRX-i x ()dC(£))0) - 3kw,
L

where the linear operator M is defined in (1). Similarly,

applying the operator i2+ka to (1) one obtainsx

(10) Mw - 0.

Hence, because of the assumption 4 above, w = 0 and hence
equation (9) implies n = 0.
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Particular choices of the measure-contour in (1) yield
[ Q J i) a three parameter family of solutions of the OD-
mentioned in the introduction; ii) the class of solutions
obtainable through the usual inverse scattering transform
method.

We now present an example of another linearization of
KdV corresponding to the "perturbed" GLM equation discussed
in the introduction.

Theorem 2

Let 0(k;x,t) be a solution of

3 21,2i
(11) * (k;x,t)+ie(kx+k t) +

L" k+X

e i(kx+k3t) (+2i).

Then
2 3 (+2i (k)

(12) u --- - f*(k;xt)(1+
x ax L

solves the KdV equation (3).
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1. INTRODUCTION

The Benjamin-Ono (BO) equation El] is a nonlinear
singular-integro-differential equation which describes
long internal gravity waves in stratified fluid. It has
been established that the BO equation possesses: a) N soli-
ton solutions [2], [3]; b) Backlund transformations, conser-
vation laws, and a novel Lax pair [ 4 ], [5 3; c) two non-
local linear operators which generate its infinitely many
commuting symmetries and constants of motion in involution[6].

In this note we outline a method of solution for the
initial value problem of the BO equation, which we take in
the form 00

(1) Ut+2uu+Hu = 0; Hv(x) = 1 v()d,
t X xx 71f-

where H denotes the filbert transform and principal value
integrals are assumed if needed. We make use of the Lax
pair

(2) iu+( +-t ) = 
+

x
+ i + + + +

(3)- i 2iXO-+ - -2i[u]-0- = -vO-,
t x xx x

where +(x,t;X)(¢-) is the limit of a function analytic in
the upper (lower) half z-plane as z-x (z is the complex ex-
tension of x); similarly [u]-, [u] are th (+) and (-)
par~s of u(x,t) respectively, i.e. u = [u] -u] , where
[u] , [u) are analytic in the upper and lower half z-plane
respectively (X is constant and is interpreted as a spectral
parameter, v is an arbitrary constant).

Our method differes substantially from the inverse
scattering transform method as applied for example to the
Korteweg-deVries equation. We think that the "inverse prob-
lem" associated with (2) is not solvabl. (in the usual sense)
and, as a result of this, equations (3)- (i.e. the time-part
of the Lax pair) play now a fundamental role.

The method we propose for linearizing (1) consists
essentially of.-the following steps (we only state the results
for the (+) functions, since the results for the (-) functions
are similar):

-i~-
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a) Use equation (2) to express [u in terms of 0+ and the
"reflection coefficient".
b) Use equation (3) to find how the "reflection coefficient"
evolves in time and then substitute the expression obtained
in a) in equation (3), to obtain a nonlinear equation for
0+.
c) Linearize the above equation for &+ to its linear part,
either by an explicit transformation (in the case of solitons
only) or by a linear integral equation (in the general case).

2. THE x-EIGENVALUE PROBLEM

Equation (2) should be interpreted as a differential
Riemann-Hilbert problem for the analytic functions c ±(z,t, A).
Equation (2) describes the jump condition across the real
axis x; it yields unique solutions for 01 provided one im-
poses some boundary conditions as z--, say, in the upper
half-plane. Here we assume that either 0+(z,tX)-o, or 1, as
z-).0, IMWz)>0.

i) Left and right eigenfunctions
Consideration of the equation (2) with the above

boundary conditions yields that: a) there exist continuous
eigenfunctions'4±-(x,t,X), where X is real and positive, and
these eigenfunctions satisfy Fredholm equations of thT
second type; b) there exist discrete eigenfunctions (
where X. are real and negative, and these eigenfunctions
satisfyihomogeneous Fredholm equations. More specifically,
let us consider only the (+) functions and let M,M denote
"left" eigenfunctions, while N,N denote "right" eigen-
functions. These eigenfunctions are specified by the follow-
ing asymptotic behavior.

(4) M-1 (5) N7-).
iXx; x-- ixx; x->+-

i-e N-e
Furthermore, let ¢. denote the descrete (+) eigenfunctions.

Then

(6 _ t = + + M (Y,t,X) dy

+ G j x,y,d.u(yt) -yI

() (xt,X) ei +G-Nyt,

N,t,X) e(N (y, t,X)
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(8) (x,t) = G(x,YYXj)u(Y,t) (y,t)dy.

+
In the above expressions G+ , G- are the +) and C-) parts
of the sectionally holomorphic function

(9) G(x,y,C) = j e'. dp,

0

where C denotes the complex extension of X, i.e.

Go

(10) G(xyx) im I J e (x-y)p dp110) G-l~y, = -+o 21 p-lX*_ c)"

Equations (6) and (7) can also be obtained from the corre-
sponding equations associated with the intermediate long
wave equation [ 7 ] in the appropriate limit.

The line of discontinuity of G is given by the positive
X axis, hence using Plemelj's formulae [8)

(11) G-G- (ie X>o

In particular for the discrete eigenfunctions Xj,

G=G-=G (x, y, X).

ii) The relationship between left and right eigen-
functions

There exists the following relationship between
left and right eigenfunctions

(12) M N +8(X,t)N;Xc

MI= N ;X<O

where O(Xt) = iJu(y,t)M(y,t,X)e-i)'Ydy

_€O
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PROOF

Let A M-N. Then using (6), (7)

A = 1 + GuuMdyy fGuiiy

= JG +uMdY - Gu(M-&)dy.

Hence

(13) A - GuAdy = i l x  e udy,

where we have used (11). Equation (13) implies that

A = B(X,t)N.

iii) Some analyticity properties
The results of Fredholm theory imply that M is a

(+) function in the r-plane, except for possible poles.
These poles correspond to homogeneous solutions of equation
(6). Hence • I

(14) 14 = l+. + I; M is a L+) function in X.1
)

Similary

(15) N = l+- + W; W is a (-) function in X.

The above representations, together with knowledge of
, are inadequate for solving the "inverse problem" associ-

ated with (12) . However, using equations (12), (14), (15)
one obtains the following important relationship.

1(16) Cu) = (X It)N1(xIt,A)dx-icj (t),P (x,t)
0

iv) The time evolution +
Using equation (12) in (3) one easily establishes

that il 2 t
(17) cj(t) = constants, B(A,t) = ()e

(t) = constants.



3. THE t-PART OF THE LAX PAIR

i) Solitons
Let 00 = 0. Then substituting (16) into (3) one0

obtains the following system of coupled nonlinear PDE's:
P

(18) jt -2X jx-i jxx+2(EcP.L) xj = 0.

If one assumes that
p C k j (t)

) 1 x-xk(t)"

one is led to the Calogero-Moser system [93

P 1
Rk E 8 ( X 3'1=1 (X k-X d

Hence, using (16) (and its complex conjugate) one recovers
the well known P-soliton solution of the BO equation. Thus,
the P-solitons correspond to the discrete spectrum of the
eigenvalue equation (2).

Recently £10) we have been able to linearize equations
(18): the transformations

(19) 4).(x,t) = Vj(x,t) - iicZ Z(x,t)Wit(x,t),

where x

(20) W, = e i(Xj- .Ox JVj ( t)e-i(Aj-A2) d

a

+ B(t)e i(xj-L) (x-a)

(21) B + i(x2-jx) B = (l£+)j) V(a,t,),)

+ iVx(a,t,X), a arbitrary,

relate equations (18) to the linear equations

(22) V. -2),.V. -iV. 0.3 -i jx jxx

i)J X



I

-6-

ii) The general case
Substituting (16) into (3) one obtains

(23) At-2 x- iNxx-2C2Y-- 1 o(T)A.--ZlC 13xA = 0

0
(24) jtX jx 1x 2rj0) ]~

where = Ne i x2 t

The above equations can also be linearized to their linear
parts with the aid of an integral equation [101. This
linearization can be used for solving the initial value
problem of the BO equation. Here, we only prove this
linearization (we actually prove a slightly stronger result
than the one needed here). A complete discussion of the
initial value problem is given in [10].

Theorem

Let %P(x,t,X) be a solution of

(25) p (x,t,X ) = V (x, t, X)-i i(xt,' )W(X',,x,t)dp(9),

L

where V(x,t,k) and W(X,£,x,t) are defined by

(26) "(X,)V.Vt-2XVx-iV =0
t x

x

(27) W(Xk.,x,t) = e i(I-)xv(Xt,t)e-i d

a

+ B(t,X,L)ei(X-£) (x-a)

(28) B t+i(L2 -x 2 ) B- (X+t)V(a,t,X)+iVx (a,t,X).

Assume that the-homogeneous equation corresponding to (25)
has only the trivial solution and that one may interchange
differentiations w.r.t. x,t and the integral along L. Then
* also solves the nonlinear equation

--------
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(29) t 2X-itP xx+2(j Px(M dp()0 0.

L

PROOF-

Let satisfy (25). Then

n(l) (X)+i fl (t,) £w (X,t) dp(,) =X())V

L

-2 x (t) [wx (XIt)+i(-X)11(xIL) -V(X),) dP(£) = 0.

L

Hence, fl() = 0 provided that

(30) f()()V = 0, L(X)W(X,£) 0, W +i(t-X)W-V = 0.

Equation (30.a) is equation (26) and equation (30.c) is
equivalent to equation (27). To satisfy equation (30.b) use
equation (27) and integration by parts, this readily yields
equation (28).

It is clear that eFuations (23), (24) are a special case

of (29) where dP(Z)= [Yc. (9£-X)- I (L)d.
17
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Note on Asymptotic Solutions of the
Korteweg-de Vries Equation with Solitons

By Mark J. Ablowitz and Yuji Kodama

The long time asymptotic solution of the Korteweg-de Vries equation containing
both solitons and the dispersive wavetrain is described. It is shown that a soliton
interacts elastically both with the dispersive wavetrain and with other solitons. An
explicit formula for the phase shift produced upon interaction is given. These
ideas also apply to other nonlinear evolution equations solvable by the inverse
scattering transform.

I. Introduction J
It is by now well known that the Korteweg-de Vries (KdV) equation has a
solution which consists of solitons and a dispersive wavetrain. The solitons and
dispersive wavetrain are associated with the discrete and continuous spectra.
respectively, in the related Schrbdinger scattering problem [1.21. Aspects of the
asymptotic behavior of the solution have been discussed by numerous authors.
For example, pure N-soliton solutions and their phase shifts have been discussed
in [1-51, and the long time asymptotic solution oi the dispersive wavetrain
without solitons has also been considered in the literature (see for example [6, 7]).
A review of the latter work as well as the connection formulas for the second
Painlevt equation was presented in [8]. The work in (8] clears up, once and for all,
the various errors, misstatements, and ambiguities regarding the 0(1) asymptotic
solution of the dispersive wavetrain. However, the problem of long time asymp-
totic states evolving from initial data containing both solitons and dispersive
wavetrain remains unresolved. A difficulty that must be overcome is that the
solitons and dispersive wavetrain are of differing, exponentially small asymptotic
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160 Mark J. Ablowitz and Yuji Kodama

orders in certain regionb of space. Their relative magnitudes change drastically
depending on spatial location. Our aim is to examine this question and show how
to obtain the long time asymptotic solution.

A related question is the following. What are the phase shifts of the solitons as
they interact both with other solitons and with the dispersive wavetrain? This
question has been considered in the literature, the only useful result so far being
given in [61 for the case of one soliton plus dispersive waves (see also (51 and 19]).
Here we show that a soliton interacts elastically with the dispersive waves as well
as with the other solitons. We give a concrete formula for the phase shift. A
corollary to this result is the definition of a "perfect soliton" of an evolution
equation, i.e., one which in the asymptotic limit interacts elastically with any
sufficiently localized disturbance. Solitary waves of an evolution equation without
this property presumably would be associated with evolution equations not
solvable by the inverse scattering transform (IST) (if this is indeed true, then
equations which have two solitary waves interacting nonelastically will not be
solvable by the IST). Finally, we remark that the ideas and methods described
herein apply, in principle, to other nonlinear evolution equations solvable by the
IST.

II. Finite perturbation method

We consider the KdV equation,

u, +6uu, + uxxx  0 0, (2.1)

with arbitrary initial data, decaying sufficiently rapidly as I x -*, u(x, 0) =,O(x).
The method of finite perturbations (see for example References [ 10-121) allows us
to seek a solution to (2.1) of the form

u(x, t) = uo(x, t) + v(x, t), (2.2)

where uo(x, t) is any special solution of (2.1) and v(x, t) given by

t, + 6(Uov)x + 6v,. + vx. = 0. (2.3)

The solution of v is obtained via the following Gel'fand-Levitan-Marchenko
integral equation (see Shabat [10], and further applications of this idea [1I, 121):

K(x,y;t)+ F(x,y;t)+ fX "K(x,s;t)F(s,y;t)ds =0, y > x,

(2.4a)

v(x, t) = 2d K(x, x; t). (2.4b)

The functions K(x, y; t) and F(x, y; t) satisfy the following partial differential
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equations:

equtins +-+ o(x, t)- uo(y,t)+2 1K(x,x;,t) K(x,y; = ,
~ax 2 ay dA ' I

(2.5a)

ax 6 a3 aa

+ 3{(uo.,X, 0 + Uo,,(y,- t)}] F(x, y; t) = 0. (2.5b)

Generally speaking the above method is very difficult to carry out with regard to
initial values. Whereas the transformation [Il]

K(xx;O) - K(x,y:0) - F(x,y;O)

(2.5b) (2.4a) (214b)
- F(x,y;t) - K(x,y;t) - v(x,t)

gives a method of solution that is conceptually clear, the concrete application of
this to an initial value problem has not yet been successfully carried out.
However, in the case where u, uo, u all decay rapidly as Ix( - oc. an explicit
formula for F(x, y; t) in terms of the scattering data at the initial time can be
obtained, thereby giving us a workable method of solution. In the appendix. we
derive the formula (see also [131)

F(x, y; t) f _°(r* (k, t) - ro" (k, t )) g,(x, t. k )go(Y, t; k) Ak

N

+ C"(t)go(x,t;iK1 )go(y,t;ix1 )
1=1

- . CO', (t)go(X, t. iko,)go(y, t-; iko,),  (2.6)
1=|

where S (t)=mIr+(k,t),(CT(t), ,)N 1 ] and ()[r (kt),{Co(t), }
are the "right" scattering data associated with the potentials u(x. t) and u,(x, )
respectively; go(x, t; k) is the Jost function of the associated scattering problem
with uo(x, t) defined in the appendix, We will show that the above formulas are
particularly useful for the asymptotic case t-- 00. The following formulas are
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also important (see appendix for derivations):

M(x, y;t) +G(x, y; t) + M ,s;t)G(s, y;t) ds=O, y <x,

(2.7a)

v(x, t) = -2- M(x, x; t), (2.7b)

where G(x. y; t) is given by

G(J (r;kt)-)(k= lo-x

G(x,y;t) 21' f r (k,t)-r; (k,t)fo(x,t; k)fo(y,t; k)dk

N

+ 7 C7 (t)fo(x, t; iKt)fo(y, t; iKt)
/=1

NO

- (C(t)fO(Xt; ix1 )fo(yt;iKo). (2.8)
1I|

Here, S-(t)=-[r-(k, t),{C-(t), K,)=,] and S-(t)=-[r;(k. t), {Cj(t), Kt01)l 1 J are
the "left" scattering data associated with u(x, t) and uo(x, t), respectively;

o(x, t; k) is the Jost function associated with u0(x, t) defimed in the appendix.
We now use the above method to describe the asymptotic solution of the KdV

equation. For given initial data,

S -= (0) = IJr-'(k,0), [ C= (0), K,} "__ 1], (2.9)

we choose two reference potentials uo whose scattering data have, respectively,

So+ (0) = [0. - C1+ (0), ,],'= (2. 1lOa)

So- (0) = [0, ({C; (0), K' IN= ], (2. 10b)

i.e., pure N-soliton solutions:

N
0t (Xt Ic" (t)[go'(X,t1; i"A], (211

1=1

N
0f (xT tW [ 4c t(t[-(x, t; i"At(xt).  (2A1 lb)

1 t=

Note that the solutions (2.11) are in terms of the squared eigenfunctions (see (2J).
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It should be noted that u(s,t) and u-(s, t) are different unless u(x, t) has
discrete spectrum only. With (2.9) the kernels of zhe integral equations (2.4) and
(2.7) simplify to

F(x, y;t) =l r_ r(k, t)go+(x, t-,k)go+(y, t; k)dA, (2.12a)

G(x,y;t)=-f r- (k,t)f/o(x,t;k)o-(y,t;k)dk. (2.12b)

Moreover, the Jost functions go and fo for the case of pure N-soliton solutions,
can be calculated in terms of determinants (see [2] and the appendix for the
general form of go and to). From this we can state that

F(x, y; t) = 0f r' (k, O)a(k)ek(+Y)+84 3t

+ 7 (x, y; t) _ R+ (k)e'ik(xY) ik dk, (2.13a)

G(x, Y; 1) =L 0 r- (k,O)a2(k)ek( x+y)8Sik'dA

+- (x, y; t)f R- (k)e-k(x+Y)ik' dk, (2.13b)

where ao(k)-fl 1 1(k- iK,)/(k + ij), R-'(k) are "nice" functions of k. and the
T = (x, y; t) are bounded functions which decay rapidly behind the solitons.

Let us order the solitons via

I > 92 > "'" > ICN > O; (2.14)

i.e., the soliton u, =2c1sech Ic(x-4K't- Xo) with parameter tc moves to the
right with the largest velocity. Hence, for t -" oo, in the soliton region, I x I KMI it 1,

we see that F and G decay exponentially, via the integral equations (2.4) and
(2.7); v(x, t) decays exponentially in this region; and

u(x, t) - u(x,t) for t -oo, x ; iNt, (2.15a)

u(x,t) t uO (x,t) for t - -o0, x : KNt. (2.15b)

But u (x, t) are the well-known soliton 3olutions. All results associated with
U(X, t) are well know. We shall retui n to this shortly to derive the formula of

the phase shifts of solitons. First, however, we remark upon the simplicity of
describing the remaining portion of the sotution.

Behind the solitons uof(x, t), T'(x, y; t) decays exponentially fast. The only
terms which contribute significantly are where we approach the regions x < t I/

t* A -

i4
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(t--.+oc), x>-It/ 3 (t-- c). As the boundaries of these regions are ap-
proached. from (2.3) v asymptotically satisfies

vr + 6ov, + t,, z 0 (2.16)

(exponentially small corrections), and

F- dkr' (k,O)a2(k )ej k 
XY+

8
,
k 

3 as t - oo, x -- I 3

(2.17a)

G J dkr- (k,O)aZ(k)e - k(x -8Ik'
- r as t o-. x- -It ' t

(2.17b)

From (2.4) and (2.7), as we approach these regions,

u - v - -- 2 F(x,x;t) as t - +oo, x - r', (2.18a)dx

v - -2± G(x,x;t) as _a- -o, X- - It i/ 3  (2.18b)

This can now be taken as the beginning point of the dispersive wave analysis of
Ablowitz and Segur [6,8]. Hence we could call upon all of these results with the
modified reflection coefficients

p+ (k,O) = r (k,O)a2(k), t - + o. (2.19a)

p- (k,0)= r-(k,O)a2(k), t - -ow, (2.19b)

[note that p- (k,0) have no poles in the upper half plane).
Let us turn to the question of phase shifts between solitons and the dispersive

wavetrain. To do this, we need only call upon well-known results. As t - + oo,
from (2, p. 1211 we have

u -. 2E2sech2 C'(x-44ct-x )  (2.20a)

0 lg 2.20b)
x .U - +

.... ''w,~ ... - T ri...-'-- .
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As t - -c. from [3, p. 14081 we have

U 2Kcsech2i,(x -4x, - -J/). (2.20c)

XO (- N'm ~(2.20d)
2 i, + K,)

(In (2.20), we note some differences in notation between (1], [21 and ourselves: (a)
our norming coefficients are the squares of theirs; (b) in [2] they order KV > K V_ -
>.> K- I >0, which is opposite to (2.14). So (2.20) reflects the appropriate
modifications.) Thus, we immediately have the phase shift formula:

01 (2.21)__ _

Special cases of this result are:

(I) When N=1.

x01 4 xO"1 log I . (2.22)
2KI (2,q)2

This agrees with the result given in (51 (note difference in the definition of the
norming constant).

(2) Pure N-soliton solutions: Here

C'+ =C (2.2, (Ki+ K- (2.23)

M , K,-Kf*
1

so that (2.21) yields

x,- 01 log + log K + (2.24)
I m1 I =1+1 I

ill. Asymptotic solution of the KdV equation with one soliton

As a consequence of the previous section. and as a concrete example, we discuss
the asymptotic solution which contains one soliton and a dispersive wavetrain.

Let u(x,0) be an initial function whose scattering data are given by

S (0) =[r -(k,O), C(0), j. (3.1)

.'..
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Choose uof(x. 0) such that the scattering datas are given. respectively, by

So (0) = (0, CF (0), K,. (3.2a)
S oT (0) = [0. OF(O). ,,]; (3.2b)

i.e., uof(x,0) are pure one-soliton solutions,

u' (x, t) = 2x2sech2  ,(x -4't - x-). (3.3a)
u x. t) = 21c IsechK,(x-4ect-x, ), (3.3b)

where x (2c,)-'log{C=(O)/(2K,)). (Note that if u(x.0) is a pure one soliton
solution, then C'Cr = (2ic) 2. i.e. x' = x-. ] The relevant Jost functions for u-,
g*(x, t, k), and fo(x. t; k) are given by

,(xt; k) = e'k [k + ii, tanh ic(x-4K2f-X)], (3.4a)

fj (x, t; k) = ek x,

fC x, ; k =e -,k" [k - i, tanh i,(x -4,t - X-,] (3.4b)/o(Xt k + = K 1 0.1

Note that go'(x, t; k) may be rewritten in the form

g0 (x, t; k) + ik. (l+tanhIcG(x))J ekx.kiKI

O(x) = x -4Kxt - x;
1 01;,

hence F(x, y; t) is given by

F(x, y; t) =-L f dkr (kO)a2(k)ek(x+y 8ik't

+ -LT,(xy; t) f0dkr+ (k O) ao(k)ik1 ek(x*y)*Sik't

(3.5)

where

T,(x. y; t) = 2 + tanh i,O(x) + tanh o(y),

T2(x, y; ) D +tanh ic,(x)] [I +tanh KIO(y)]
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(note that T,, T2 are bounded and T,, T2 - 0 as 8(x), 0(y)-- - 0). From (3.5). for
t -. o, behind the soliton F(x, y; :) can be approximated by

F(x1y; t) r' (k,O)a(k)ek(.+Y) _,k3t for x, y < 4#ct,

(3.6)

and for all other regions, F(x. y; 1) decays exponentially. For t - 00, the solution

of (2.3) in the region behind the soliton can be given by

v, + 6vv, + v., = 0 (3.7)

(i.e., the term uOv can be ignored). Since F(x. y; t) is given by (3.6) for t -. 0, one

can find the asymptotic solution by using the method developed in [5] with

modified reflection coefficient p + (k, 0) = r + (k. 0)a02(k).

Appendix A. Scattering problem

The scattering problem for the KdV equation (2.1) is given by

C. + (u + k2 )P =0, (A.la)

4', + 4*4x,, + 6uC + 3ui = 4ik 3. (A.lb)

The Jost functions are the solutions of (A. 1 a) defined by

(x,t;k) - e - k x  as x - -- oo,
(A.2)

g(x, t; k) - ekx as x - 00.

For real k, there are relations between f and g,

f(x, t; k) = a(k, t)g(x, t; - k) + b(k t)g(x, t, k),
(A.3)

g(x.t;k) = a(k.t)f(x,t;-k)- b(-k,t)f(x,tk),

where Ia(k. t)l 2 -Ib(k. t)1 2 = I.
The bound states of (A.la) are given by

a(0K,, t) = 0,
(A.4)

f(x.t;ix1 ) = blg(x. t; tic,). I . N,

where x, (I = I. N) are real and positive. Then the right scattering data S + are

*-i=.. mts-NN...
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defined by

S -" W t r= r (k .t ) (-a- - ,t ,{ i (t ) , K l)1 =4 , (A .5 a )
1 -4 f=(k, t)

and the left scattering data S- by
S-(t).=[-(k~t)= b(- k.t) { t

a(kt). " (, (A.5b)

where C7" = b,/(ia ) and C*C[ -l/(a;)' [a;= aa(k)/akI k=,.,].
From (A. I b), the time evolution of the scattering data is given by

a(k,t) = a(k,O) = a(k),

b(k, t) = b(k,O)exp(8ik 3t), (A.6)

bl(t ) = b,(O)exp(8x?3).

For an N-soliton solution, g(x, t; k) and f(x, t; k) are given by (see for'example
[2D

g(x,t;k)= l-i N -! g(x,t;iK,) e x,  (A.7a)

The bound states g(x, t; iK,) and f(x, t; iK1 ) tend to one soliton forms asymptoti-
cally:

g(X, t; il)"-2 C," ]/ sech K[x-xt'(t)] for t - o. (A.8a)

f(x, 1,iK) sechK,[x-x-(0I for t - -oo (A.8b)

where x:'(t) are the centers of the solitons, given by

x+ (f) T log K, _.K 1 21 (A.9a)
I [C, I t 2KI K I )__

x'(t)=--lo -M = KI 1. (A.9b)
21c, 2 ,+ ,I
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Appendix B. Derivations of (2.4)-(2.7)

Here, we derive Equations (2.4)-(2.7), used in the finite perturbation method.
Let u(x, t) and u0(x, t) be the two potential functions in (A.l), with scattering

data corresponding to these potentials: S and S ,. Consider the following
identity:

f(x,k )8 o(y, k)(k)yk = go(Y. k) (g(x. -k) + r'(k)g(x, k)), (B.1)

where time t has been suppressed. We make an Ansatz

g(x, k) = go(x, k) +f K(x. s)go(s, k) ds. (B.2)

Substituting (B.2) into (B.l) and integrating (B.I) with respect to k from - to
no, one can find the relation, for y > x,

.L bti , g(X, igl)go(y , iK,)

-_k)rdk +f r-(k)go(xk)go(y.k)dk
= f go(x,_k)go(y~kd 2,

+-Lf K(x,s)f_ go(s,-k)go(y,k)dkds

+-L K(x r s)- r '(k)g 0 (s ' k)g ° (y.k)dkds for y > x. (B.3)

Here we have used the fact that f(x, k), go(x, k), and a(k) are analytically
continuable to the upper half plane of k and, asymptotically.

f(x, k)-~e-k'
go(x, k)~-e'" as I k --,, Im k--0. (B.4)

a(k)-- -

On the other hand, there is a completeness relation,

8(x-y) = -i X - o0 xi ,)go(y. i,)

1 = b°(k)+-J f_ (x, k)go(y,k)dk. (B.5)
,a 0, n-(k) f
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Taking (B.5) into account, (B.3) gives the Gel'fand-Levitan-Marchenko equation
(2.4a) with F(x, y) given by (2.7a).

From (B.2), we have (2.5a) and (2.6a), i.e.,

[axz y +u(x,t)-uo(y,t) K(x,y;rt)= .

du(x. t) - uo(x, t) = 2 K(x, x; t).

It is obvious that F(x, y; t) satisfies (2.5b). To derive the other expression (2.4b),
consider the identity

g(x, k)f0(y, k) = fo(y,k){f(x,-k)+r-(k)f(xk)}. (B.6)
a(k)

Then, in a similar way as before, one can derive (2.4b)-(2.7b).
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The inverse scattering transformation method associated with a nonlinear singular
integrodifferential equation is discussed. The equation describes long internal gravity waves in a
stratified fluid of finite depth, and reduces to the Korteweg-de Vries equation as shallow water
limit and the Benjamin-Ono equation as deep water limit. Both limits of the method and novel
aspects of the theory are also discussed.

PAa, numbers: 03.40.Kf, 02.30. + g

1. INTRODUCTION Sec. 2, we reformulate the IST scheme, originated in Ref. 6,
In recent years, there has been considerable physical with a specific analytical requirement in the complex x

and mathematical interest in a certain nonlinear singular plane, say z plane. Specifically, the scattering problem may
integrodifferential equation, "- be viewed as a differential Riemann-Hilbert problem. In

Sec. 3, we discuss the direct scattering problem, and defineu, + (l/6)u + 2uu, + Tu 1 =0, (1.1) specific Jost functions in terms ofa Green function. Then we

where T(.) is the singular integral operator given by show that the Jost function satisfies a Fredholm type integral
0 . cX) equation. This is unlike the usual situations where we have

- coth f(y) dy (1.2) local scattering problems (e.g., Schr6dinger equation) and
where the Jost function satisfies the Volterra integral equa-

(Pf - represents the principal value integral). Physically, tion. Several remarkable features of the Green function cor-
Eq. (1. 1) describes the long internal gravity waves in a strati- responding to the limits &--0, &-- = are discussed in Appen-
fled fluid with finite depth (characterized by the parameter dix A. Using the results obtained in the previous sections,
6). Depending on the parameter 6, (1.1) reduces to the Sec. 4 is devoted to solving the inverse problem within a
Korteweg-de Vries (KdV) equation as -.0 (shallow-water certain class of initial conditions. For this class of initial con-
limit), ditions we construct the linear integral equation (i.e., a Gel-

u, + 2uu, + (6/3)u,, = 0, (1.3) 'fand-Levitan type equation) and hence give the direct con-
neetion between the solution of(1. 1) and the scattering data

and the Benamin-Ono (DO) equation as--- (deep-water defined in Sec. 3. In Sec. 5, using the Gel'fand-Levitan equna-
limit), tion, we obtain an explicit form of the N-soliton solution, and

u, + 2uu, + Hu,, - 0. (1.4) in Sec. 6, taking the analyticity of the scattering data into
Here H(.) is the Hilbert transform given by account, we give the trace formula for the scattering func-

I tion, and we express the conserved quanitities in terms of the
(Hf) - Pf" --- ffy)dy. (1.5) scattering data. In Secs. 4-6 we keep 6 finite in order for use

. y - x to be sure of the appropriate analyticity of our Jost functions.
Hence Eq. (1.1) is an intermediary equation between those We discuss the case 6 = co (the BO limit) in Sec. 7, and we
two very interesting nonlinear evolution equations, (describ- illustrate several remarkable properties of the scattering
ing certain long wave motion). It is now known that (1.1) has problem in this case. Our basic philosophy regarding the BO
an N-soliton solution, 3" infinite number of conservation equation is to obtain the information by taking the limit pro-
lows, a Bficklund transformation and a novel type of inverse cess &-- wa. However, we are careful to point out that we do
scattering transform (IST) to solve the initial value not present here the solution to the initial value problem of
problem.6-7 the DO equation. Nevertheless we feel that the analysis pre-

In this paper, we discuss in detail the direct and inverse sented here should be a basis for extension to the DO
problems of this new scattering problem. This paper serves equation.
to amplify ad extend the results of our previous note.7 In

2lrST SCHEME
The IST Scheme' for (1.1) is given by

-Pmrm addWgu Gmal Educatios Miyazaki Medi"l Collge, Miya-
iW J .16 . ipL + (u10 AW = A#- ' (2.1)
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i +2i/ + + b, + [ :p iu, - Tu, + v)]0:: W(x;k )m=(x;k) exp(ikx), (3.1)

=0, (2.2) where we have defined 0(x;k)=6 (x ± i6;k) and

where )A and u are constants given by = - k ot2, W(x;k ) W I (x ± i0;k) by taking (2.6) into account. Here-
p= k cosech 2k8, and v is a onstant determined by fixing after, for functionsf * (x), we shall frequently use the notion

the Jost functions of (2. 1) (see Sec. 3). Here b ± (x) represent f(x) in whichf (x) =f(x = 18).
the boundary values of functions From (3.1) Eqs. (2. 1) and (2.2) become

[, (x) lir analytic in the horizontal strips iW + (%, + 1/26)(W+ - W - W (3.2)

betweenlmz=Oandlmz= 28, and periodically ex- iW,± -2i;+W± + W±

tended vertically. By using the operator T(.), 0 ± (x) may be + [ ,,iu - Tu, + p]W ± =

written in the form (3.3)
wherep= - 2k4- +-k2 + V, :' = ', (k)

**(x)= lir Oz) - (l - iT) P (x), (2.3a) =k ± (k coth 2k6 - 1/26) (we shall need the definition of
Im ztO

' subsequently). The solution to (3.2) can be given by an
*-(x) = lirn 0z) = - J(l + iT)'(x), (2.3b) integral equation,

Im ztO

where W (x) defined on the real axis is a proper fuction for the W(x;k) = Wo(x;k) +r G(x, y;k)u(y)W'(yrk)dy
operatorT{.)(i.e., f_ ! '(x) dxj < oo, and P(x) satisfies thef-
Holder condition on the real axis, i.e., there exists constants (3.4)

Cand h such that I'P (x) - P!'(y)( <C x - yjh, 0< h 1), and where W(x;k) is the solution of the homogeneous equation
for Im ziA0(mod 28), Oz) is given by of (3.2) (i.e., u(x) = 01, and G (x,,k ) is a Green function

v/(z)= -f coth v1y -z) '(y) dy. (2.4) satisfying
4i2 i G -(x, yrk) + (C. + 1125)[G + (x, y;k )

From (2.3) and (2.4), we have a relation ax

T(O4 - 0 - ) = i(*+ + 0-). (2.5) - G -x,y;k)] = -6(x-y). (3.5)

It should be noted that the relation (2.5) due to the analytic- HereG ± (x,y;k ) = G(x : i6a, yk ). From(3.5), wehavethe
.ty requirement is weaker than condition (27) in Ref. 6 in a Fourier representation of the Green function G (x, yrk ),

sense (i.e., if n 0' is analytic, then so is * ). Furthermore,i ^
from the periodicity (period 4b) of (2.4), we have the relation G(x, yk)= T' jdpG(p;kW0e-" (3.6)

between 0* (x) in the form of difference in which G(p;k)are given by

0-(x) -bi x + 218). (2.6) [ iven by

We also note that the same constant can be added to ) - [NO " 2ksinh 2k6
t (x) without violating the analytically requirement. With

regard to the limits -O and 6-o , we make some remarks. =L cosech(p5)Ip[;_( 2  - _k)
Remark 1: As mentioned in Ref. 6, for --"0, the scatter- 2 2

ing problem (2.1) tends to the Schr6dinger equation with (3.7)

0 (x) - lim 0 * (x), i.e., where the contour C is taken to be a contour (from - co to
ao) determined by choosing the specific solution to (3.2) (see

J(#J. + k 20) + u -, (2.7) below). In Appendix A, we discuss the properties of the

and for 6---=o, Green function in both limits -.O and 8--- o. From (3.7),
we see that G(p;k) have poles atp = O,p = 2 [ ; [ +(k)].

i + + (u + k)# +  2k*-, for k>0, (2.8) Since ;7'(.) isthe multivalued function, we have an infinite

where #,± (z) are the functions analytic in the upper and low- number of poles for which we shall define p- I = 0, Po = 2k
er halfz plane. an> 1) such that, for n> 1, (2n - 1 */(2) < Imp.

Remark 2: The formula 12.4) with the limit&--* o isjust <(2n + 3)r/(28) and similarly for - Im ff. Moreover dou-

the Plemelj formula, that is, as&--** , J(l T iTX.) in(2.3) tend ble zero poles occur at special values of ;+(k) satisfying

to the usual projection operators P *(.) - I(1 Th1H)(.) that ;. (k) 0 andp, C ,(4k),, X- +(k) (n>l) [i.e.,

decompose a function into two functionsanalyticintheup- PM =PM-KP, -,,- (n>O)].Wecall thesevalues =0

per and lower half: plane. and (;14 " j,,(Im ". >OImf4 <0). Considering
the equations ofp, (n>0),

& DIRECT SCATTERING PROBLEM dp, . p. (3.8)

Here and in Secs 4-6 we assume for convenience that d;+ 26(p, - C.( + 1/28)

the initial condition u(xO) decays suffciently rapidly as (F. satisfy same equation), one can see that there are logarith-
Ix--ea. In order to analyze the direct scattering problem of mic branch points at ;+ - - 1/28 forpo, p, and, (n>l),
(2. 1), it is convenient to define a new function, and square root branch points at I '+ ,+ I for po, at

a" J. MaLh. Pty&, VOL 23, No. 4, AP I 1N2 KodSLm. Alowf, and SatUM%



I..., N (x;k A-Sl ax--*o (3.100, )

Here note that l(x;k) = M(x; - k) exp2ikx) and
NW(x;k) = N(x; - k) exp(2ikx). Then in terms of the Green

O'/Z ,function (3.6), these Jost functions are given by

x ;k) I ,. = f ,(x , ,k* )u( y)(Z '( ) dy,
P'/2 MU_(.~k)) (y,k))

(3. lab)

P , 2;k )= + Gx,y,k )u(y) d(yk) dy,

PP;Pi__*P4R1P(3.12ab)
- .21 % - -where the contours C1, for G1.2 (x, y;k) are taken to be the

-m <m lines Re (p - A), Reip + A), respectively [this is necessary
in order to preserve the boundary conditions (3.9) and

-------------- "...- (3.10)]. Note that by taking these contours the Green func-
tions G, 2(x, y,k ) are bounded as Ix -oo. It is important to
remark that (3.11) and (3.12) are Fredholm type integral

FIG. i. The k plne (Or p12 planel. For gven k, x and 0 denote the poles equations, unlike the usual case of the local scattering prob-
,, , 1 1,and the double poles CT = 0. ) C' ,' ) of lem (e.g., Schr~idinger equation) where thelost functions sat-

Eq. (3.7), respectively. Each branch is surrounded by the dotted line, and the Volterra type integral equations. In addition, we note
branch A is the principal branch (PB). The shaded regions correspond to the isfy
upper half . plane (Multisheeted). that by using residue calculus (3.11) and (3.12) can be repre-

"I nat ( 1)) for, resented in an explicit manner useful for the proof of existence
(y- ., -" forpandat ,. respective- and analyticity of the solution (see Appendix B). As shown in
ly. It should be noted that from the multiplicity of k Appendix B, we have the following propositions:

+ =(.)), 'we are required to define an appropriate branch (i) M (x;k), N (x;k) have convergent Neumann series inin k plane. We show in Fig. I the several of the branches in k certain region of the FS for given 6 and maxj u I chosen small
plane, and in Fig. 2 the fundamental sheet (abbreviated here- enough.
after as FS) corresponding to the principal branch (as PB), (ii) Despite the fact mentioned below Eq. (3.8) (i.e., the
which is the portion A including the real k axis in Fig. 1. poles have square root branch points in the FS), M (x;k) and

From (3.2), one can see that if W (x;k) is a solution, then N (x;k) are holomorphic in the upper and lower half plane of
W(x; - k) exp(2ikx) is also a solution. Taking this into ac- the FS, respectively. Moreover they are analytic in these re-
count we now define specific Jost functions of (3.2). For real gions, whenever the Neumann series converges in this re-
k, the Jost functions are defined as the solution to (3.2) with gion. In addition, we have the asymptotic form ofM (x;k) and
the boundary conditions N(x;k),

. (.,)_. ,jas X- - Go, (3.9ebb) M(x;k--*l +O 0 asIC.1l-co, Im;' >0,(3.13)

Wm (x;k _.l + 0 (D.. as 1C. l-o, mC.< .(.4In' ImC+ <. (3.14)

We now define the appropriate scattering data corre-
sponding to the Jost functions (3.11) and (3.12). For real k

C-. o [i.e., ;+ > - 1/(26 )], by virtue of the fact that
GI(x, yk) - G2(x, y,k)

I 1

" - .2 - _ -~- exp (2ik(x-y)- 2k6], (3.15)
0 we have alternative representations for M(x;k ) and N(x;k),

respectively,

M (x;k) - a(k) + b (k *,1

+fJ G2(x,yk )u(y)M I(y;k dv, (3.16)

N(x;k) - a k *,' + ,(k)

FIO. 2. The flnemental sh (FSI corresponding to the principal branch. +f G 6(x,y;ku(yN-+(y',kIdy. (3.17)
The wave limas show the branch cuts corresponding to the edges of PB.
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Here a(k), b (k), "(k) and b(k) are given by are given by

alk)-I+ f dyuy)M+lyk), (3.18a) a(k,)=O, M(x;kl)=bN(x;kl) (3.31)

20C, _-. and

b - f" dyu(y)M+(y;k*-2kik-0, d k,)=0, N(x;k)= M(x;C), (3.32)
( _3.18b) with/F, = - k? for I= 1,2,...,N. As shown in Appendix D,

k - a(k) has only simple zeroes and they lie on the imaginary k
al{k)=1+ dyuy)Ny,k)e -A(7 ' - , axis, i.e.,k, =ix, =ki, O<K, <r/26inthePB, andbS

3.1)- 1 . The right and left scattering datas are now given by
S(3. [a(k),b (k), IK,,b I .], (3.33)

(3.19h) SL = [(k ),(k ,, , 3.34)

When the solutions of the integral equations (3.16) and (3.17) Let us now find the time evolution of the scattering

are unique (or having a convergent Neumann series as a data. By virtue of the boundary condition (3.9), the constant
stronger condition), then we have p in (3.3) is taken to be zero. From (3.3), (3.20), and (3.27), we

M (x;k) =a(k)N(x;k) + b (k)N(x;k) (3.20) obtain
a da(k,l) =(0 ), 13.35a)

and
b (k,) = b (kO) exp[ - 4ik (A + 1/26)t], (3.35b)

N(x;k) = ak )M(x;k) + b(k )M(x;k), (3.21) bQ') = b(O) exp[4K,(A, + 1/2), (3.35c)

which are considered as "right" and "left" scattering equa-
tions, respectively. Moreover, as shown in Appendix C, one where A, = A (iK,) = - x, cot2w,8.

finds Before closing this section, we offer several remarks:
Remark 1: Although there are infinitely many solutions

'1k) = - k), (3.22a) to (3.2) corresponding to the poles of (3.7), we have chosen
(d,)( d,- b I-Ionly a finite set of solutions as the Jost functions where the

E(k)= -b(-k)=, -- 7-- b *(k), Green functions are bounded as lxl-oa for real k, that is,(3.22b) (3.9) and (3.10). As shown in Appendix E, however, when we

(a(k (2 have a unique solution to the integral equation (3.4) [e.g., ink - I -~ J b (k )12 = 1. (3.23) the case that the Neumann series of the integral equation
A d tk ) /(3.4) converges], our set of the Jost functions (3.11) [or (3.12)]

From (3. 1 a), we note that a(k) takes on the same analyticity consists of a complete set of the functions in the sense of
as M(x;k), and a(k )--* as 1 , 1--- a, Im ; A. L 2( - 00 <x < -).

On theother hand, forC+ + i0withC, < - 1/(26 )and Remark 2: In order to define the scattering data (3.33)
. real [i.e., k is in the upper half plane at the edge of the PB [or (3.34)], we have assumed that the solution of the integral

where C,(k) , %. = C',(k )] we have a relation equation (3.4) is unique (and we have given sufficient condi-

tior.n on 8, maxlul for this to hold), mathematically speak-
G,(x, yI) - G2(x, y,k*)= - (3.24) ing, there is to be no nontrivial solution of the homogeneous

2i8g' equation of (3.4), i.e.,
from which we have

M(x;k) - a(k) + f" G2(x,yk -)u(y)M ( y,k) dy, (3.25) Wf x;k) - G _ (x, y;k )u(y)W" ( y,k ) dy. (3.36)

17(x,k) a - k ) + f )u(y)N4 (yk ) dy. However, in general, the solutions W' (x;k) may exist for

(3.26) some k [certainly for -cc (see Sec. 7) we refer to such val-
ues ofk as "eigenvalues" of the Fredhoim integral equation].

Here we have used the relation 2(xk ) -= N x; - k ) ep In this case, the solution to (3.4) may have a singularity,
(2ikx). From (3.25) and (3.26), we obtain unless W + (x;k) satisfies

M (x.k) - a(k) 7(x;k *), (3.27)

• )(x.k 0) - al-k)M(x;k) (3.28) [W(x;k)Wox;k)] dx= O,

where WA(x;k) is the solution of the adjoint equation of
[i.e., ok - k ) - 11, whenever the solutions of(3.25) and (3.36),
(3.26) are unique.

The bound stan defined as [W(x;k)]+ - u(x) " +(y;x;k )[WA(yk)]+ dy,
M (0)F-4 as x-*+cc (3.29) f-

and we must add this eigenvalue into the scattering data (it

and may be a new kind of bound state). We shall discuss briefly

N[ (k-.O as x-..-cc (3.30) such situations in Sec. 7.
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4. INVERSE SCATTERING PROS.EM with

We now discuss the inverse scattering problem asoci- F(x, A f 'd b'(k)ke4-_x.i. ,ated with (3.2) in the case when the integral equations for the 21r dk a(k I

Jost functions have a unique solution and the Jost functions
are analytic in certain region of the !S. + C, exp(i4 Ix + i", y), (4.10)

ForN(x;k ), from the analyticity and the asymptotic be-
havior (3.14), the following integral representation is (note f dk (dC+/dk). = f _ wdC..). In Sec. 5, by using
3uggested: (4.9), we c, ruct the N-soliton solution as an example of an

explicit solution of (1. 1).
N(x;k) I + f dsK(x,s) " 

-1 for Im . <0. To close this section. we briefly discuss an alternative
J( method of the inverse problem which is a direct method'

S( 3,) based upon the Gel'fand-Levitan equation (4.9). From
Substituting(4.1)into (3.2)and (3.3),onefindsthatthekernei (4.10), taking (Ci. + 1/26) (- (-._ + 1/26) exp(4k8) into
K (x, y) satisfies account, one finds that F(x, y) satisfies

fia + 1/26 + u(x)1K (x, y) + (i, - 1/26 )K -(x, y) ,0 (i + 1/26)F +(x, y) + (i, - 1/26)F-x, y) = 0.
(4.2) (4.11)

(id, +9. -d, +2(d.K(xx))1K(x,y),-0. (4.3) From (3.35), we also have

with (i d, + d- )F (x, y) = 0. (4.12)

u(x) - iK (xoX) - K -(x.x), (4.4)

where K & (x, y) - K (x :p i6, y T A and K (x, y)-.0 as From (4.9), (4.11), and (4.12) one can derive (4.2) and (4.3)
y- cc. It is important to note that (4.4) is a decomposition of with (4.4) whose compatibility yields (1. 1) with (4.5). Then
u(x) (see Sec. 2), and from t2.5) we also have the relation, the direct method based upon (4.9) is given as follows: For

(Tu)x) - - IK "xx) + K -x,x)). (4.5) given u(x,O),
( 1) find K ± (x, y,O) from (4.2) with the boundary condi-

Subject to (4.4) and (4.3), one can see that the compatibility tion K ± (xx,O) - T_ iu ± (x,O) [u(x,0) - u + (x,0) + u-(x,O)
between (4.2) and (4.3) gives Eq. (.1)..4),

From (4.1) and the relation N(x;k) -N(r, - k) (4)f ,
exp(2ikx), we also have (3) find F ±(x, y,0) from (4.12),

N(x;k) - e' I + ds K (xs)e- -
- d]  (4,6) (4) find K (x, y,t) from (4.9),

L 1" (5) then u(x,t) = X +(x,x,t) - iK -(xx,t).

which is analytic in the upper half;_ plane [note
.(- k) =- C_(k )].Byvirtueofthetrianularrepresenta-

tions (4.1) and (4.6) one can derive the linear integral equa-
tion (i.e., a Gel'fand-Levitan type equation) and hence solve L i-SOUTON SOLUTION
the inverse problem as follows: dividing (3.20) and (3.27) by In the case of an N-soliton solution, F(x, y) in the
a(k) and operating with (1/2r)f_ d 4+ exp[iC',.(y - x)). Gel'fand-Levitan equation is given by
(i.e., Fourier transform) for y > x, we have M

_ d Mx;k)F(x,y) _C, exp(iC_ ,x + iCy), (5.1)
1- dt4 M ~ ~ "~ -

21r J - '0 + a(k) where C is a positive real function oft (see Appendix D). In
I "dC (xk - x order to solve (4.9) with (5.1), we assume K (x, y) to be of the
S"f _ )  - form

+ , d iNx;k) "C(- *1 . (4.7) K(xy)= ,(C,)1 2r,1(x)exp(iC+,y). (5.2)
2r Elm a(k) 1-I

Fromtheanalyticity argumentsforM (x;k )anda(k )(i.e.,ana- Then (4.9) becomes
lytic on the upper half plane of the FS), the left-hand side of N (C C,)I 2e, _.A.
(4.7) can bewtten in the form r. + 1 M - •+r, - -M _ C

- ,Ncv r,)ezp [i + ,(yx )], (4.8) (5.3)
wher 1C, - - ih,/d,. d, - d/C. 4-8) Here we note that the matrix A (x) defined by

where C, -f - ib,/ ,. d, - a/1JV+ 1C. -C. ,, C I. - C.(r,).

Then, using (4.1) and (4.6), we obtain the Geffand-Levitan [A (x)]., - a(C.C,)" exp -, + L (5.4)
equatin, C_. +C+

,- is positive definite. Namely, for an arbitrary column vector
K (x, y) +F(x, y) jK(x~sF(sy) -0 fory>x, V ft (V,....VN)rthe inner product (VA V)m(Vr)*A V takes

(4.9) positive value, i.e., noting (C .,)* - - C'- ,,
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(C, C,)' /2e4-" " ' which is the associated linear equation of( 1.1). Note that this
(VIA V)= iX U+ + 1  result is similar to the case of the KdV equation.9 In fact, the

C +.~' +1 results obtained in Ref. 9 for the KdV solitons are derived by

,fC .v. exp(i.S) ds>0. (5.5) taking lim 6-.0 in our results.

Therefore, for r(FI,...xN)T, we have 6. CONSERVATION LAWS

r (+ ) 'E (5.6) As shown in Ref. 6, (1. 1) has an infinite number of con-

where Ei(E,...,EN) r with the element El servation laws. Here we give the direct connection between
= - C 1 2 exp(iC _ ,x). From (5.6), we obtain those conserved quantities and the scattering data defined in

K (xx) -A1ndetf1+,(xfl, the Sec. 3. We firt show that the function defined by

4Wx~x)= Inal~(.o(x;k),,nM_(x;k)
which leads to M (x;k) (

I IJ-*A~ t (. - 0is directly related to the scattering dataa(k ). Noting that, for
u(x") .- i1 -Ixe(. largeCinthe upperhalfplaneoftheFS,M (x;k)arenotO II + A (x + 0jt) 'zero, we have a relation

where Iis the identity matrix. For example, a I -soliton solu-
tion is given by (Tcr)(x;k) = - i ln(M (x;k )M -(x;k ),], (6.2)

2K, sin(2,6) for large .1, Im . > 0, where we have used the fact men-
u(X,t) = s, (5.9) tioned below Eq. (2.6), and the constant A can be determinedcos(2c,6) + coshl 2ai [x - x,(t)]' by the boundary condition (see below). It should be noted

whereK, is an eigenvalue, k = I,, and from (3.35) x,(t) is that oax)--O as Ix 1-* oo, since for Im C,. > 0 in the FS,
given by M ± (x;k )-l asx-.- a andM * (x;k)-ea(k) asx--. + o.

x,(t) = 1 In C,(t) From (6. 1) and (6.2), (4.2) and (4.3) become
2 , 2 , I [ .I

= (2A.I + 6-'}t + x,(O}. (5.10) • 4- 16 1 21- 1-e)-i, -T,+2 6

For N-soliton solution, following the method developed in o0, - 2C a. - ia.' + a. T o. + 2u.' =0. (6.4)
Ref. 9, one can calculate the phase shift formula for I th- Taking f'_*a To, dx =0 into account, from (6.4), one
soliton, finds that o) is a conserved density. For large i. , (6.3) has

x+ (0) - x7 (0) an asymptotic expansion

+I_ a+. I (6.5)
(5.11) The first two 0.(x) are

Here we have orderedmi > K 2 >... > r > 0, andx (0)are the 01 = 2u,
phases of the soliton at t-. ± a, respectively. (6.6)

It is interesting to note that the N-soliton solution (5.8) 2
can be written in tems of the squared genfunctions. From 2- -2u"- - u - 2iu, - 2T(u).

(5.3) we have On the other hand, from the definition of T(.), we have

CINI, -C 1r, expg + x) (5.12) -If ayk) dy as x-..,
and V C , (T)x;k)-

N,, e - ' _j (5.13) f ayk as x-- -,
i- C_. +C+1 6 67where N,(x) = N(xx,). Then we obtain (6.7)

ujx) -= MK +Oxx) - K -Ox) and from the boundary conditions of M ± (x;k) for
Im C+ >0,

- - j [ ([M+(k) -(k)A ] ln[al(k)A] as x-..+ o,C, [N,+(x)- N,-(x)] 
["InA as x-. -0.N' (6.8)

•-2 2,- C,sin(k,)N,+ Ie 'f . (5.14)(68
=2 i n I154 Comparing (6.7) with (6.8), we obtain

On the other hand, from (2. 1) or (3.2), one finds that the
eqatioafor ,pM*12 lW+eXp[_ik (X i)l12with k Ina(k)=, f - o y;k)dy. (6.9)

Next we derive a closed form expression for a(k ) by us-
S+ (l/If, +20P, + '1, , (5.15) ing the analyticity requirements ofthe previous sections.
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Namely, we employ the following facts: From (3.2) and (3.3) with 6--o, the IST scheme of the
(i) a(k) is analytic for Im ;+. > 0. BO equation is given by
(ii) a(k) has only a finite number of simple zeros. i + 2 - w - uw, (7.1)
(iii) a(k )-, as j 1--co for Im ; 0.
(iv) alk) - d*( - k *) for real +(k). iw," - 4ikwt + wt + [p2iP ± (u.) + p ] " =0 , (7.2)
In this case, a(k ) can be written in the form where P ± (.) are the usual projection operators given by

P I (.) = J[H :: W ](.), and w ± (x) are the boundary values of
the functions analytic in the upper and lower half z plane,

'v - respectively. Here we require that the derivatives ofw ± (x;k)
a(k) = d(k) f (6.10) satisfy

where, for Im ;,>0, d(k) has no zeros and d(k )-1 as HwX = ± Xiw (7.3)

Ic' . )--.. From (6.10) we obtain With (3.11) and (3.12), we define the Jost functions of
(7.1) as follows. For real k > 0,

(I r. (x;k) = lia M (x;k), (7.4a)

o I xp aI[, (611, ft(x;k) = lim M (x;k) exp -2k ), (7.4b

for lnC, > 0, 21i ;._1(6.11) &)
n ± (x;k) = lir N ± (x;k) exp( - ), (7.5a)

a(k ) = lira a(k ), for real '.n C._o M i(x;k) = lim N (x;k). (7.5b)

For large c' , we have the asymptotic expansion, 6-'*

IAs mentioned in Appendix A, these Jost functions are the
In a(k) = - - [ - ' . )"-,na(k')I dC"' solutions of the split equations

26 iw + 2k (w -wo)= -P (uw ), (7.6a)
4. - - 2k(wv- w.)=P-(uw ), (7.6b)

Comparing (6.5) with (6.12), we now obtain the trace formula where wo is a constant determined by the boundary condi-
tion. The Green's functions associated with (7.4) and (7.5),

I~. 6.,(y) dy= - ,dc .  -lnalk )2 defined by g,,(x,y;k) = lim G ,.(x,yrk), are given in the

2* N explicit form, for real k > 0,
- 0,' 1 1 6 .1 3 )

From the first two terms of I., we have g1+(x,y;k)=ie2" -()O{(x-y)- LE1 [2'k(x-y)]j
d 4 Kt6- d; inlalk)12, (6.14a (7.7a)

f g2("x,y;k) = iem '1'- +g1
4+ (x,y;k), (7.7b)

F4i 26 5 - - rik(x-y-i)' 7.Sa)

+ dC'. C. lnla(k)12 . (6.14b) g-(Ix,y;k) = g1'(xy,k), (7.8b)
Fii where 0 (.) is the usual Heaviside step function, and E, (z) is

the exponential integral,

E,(z)=f" - dt, for argz1<r, (7.9)

7. NOTES ON THE BENJAMIN-ONO EQUATION and asymptotically E,(z -.Cqe -7Iz) as zf-.-. The integral

In Ses. 4-6, we developed a method associated with the equations for m + and n + are found in the same way as in Sec.
IST problem of(l. l) in the case where the Neumann series 3; hence, from (7.7), we have, for real k > 0,
corresponding to the integral equation (3.4) converges. Suffi- m (x;k) I + ,(k )e
cient conditions for this to hold are to have 6finite and
maxlu( chosen small enough (see Appendix B). We now + " g2'(xy;k)u(y)m (y;k ) dy, (7.10)
briefly consider the scattering problem in the case 6 = ®,.
and we And several results associated with the BO equation n (x;k) = a(k )e"

by solving the scattering problem. Our basic philosophy re-
garding this case is to obtain information by taking the limit + f g,xy;k u(y)n*(y;kjdy, (7.111
process 6- o co.
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which leads to example. Namely consider the following initial condition,

m (x;k) =.i (x;k) +fl(k)n (x;k ), (7.12) u(x) 22ve

n -(x;k ) =. a-]k )fi(x;k ), (7.13) x 2+E2

whenever the solutions of(7. 10) and (7.11) are unique. Here where v and e are constants, and without loss of generality e

,6 (k) and -'k) are given by can be taken I by virtue of the scaling asymmetry, x--,x,
t-*,.2t, u-4ou/e (the BO equation with this initial c, ndition

6 (k) = lim b (k) exp(2k) has been discussed numerically in Ref. 11). The method dis-
cused below can be applied to the case in which u(x) takes

u(yn (y;kke- 1dy, (7.14) more general form of a rotational fuuction. For a bound state
(i.e., real k < 0), by virtue of Cauchy's theorem, we immedi-

a-(k) - lir (k) ately obtain n -(x;k), from (7.6b),
6-'" n-(x;k ) -L.._p-(un +)(x;k )

-- . = u( y n " ( y; k - 241dy (7.15) 2k

(notethat forrealk>O,a(k)--,(kr-. as 6--.0o].Sofar -- F ,.x-y- y0 ( (y;k)dy

we have discussed the Jost functions for real k > 0. A re- v \

markable feature of the scattering problem (7.1) may arise =-L Resi l--n ly;k)]
for real k < 0. In this case, the Green functions become 2k X - y -o0 +/

g,+ (x,y-,k) = g+ (x,y,k) = (/21rE, (2ik (x -y)]e klfk ), -ivn 
+ (i;k)

(7.16) 2k (x - t' (7.22)

andg- (x,y-,k ) are the same as (7.8). Then, the Jost functions where we have used the requirement that n (y;k ) is analytic
are given by on the upper half plane. It should be noted that n- ix;k) can
m+(x;k)- I+ I " ._ be calculated explicitly and the degree of singularity in the

2w upper half plane is the same as the one ofu(x) when u(x) is the

rational function. Then the solution n 4 (x;k) can be found

E(2ik(x-y)Iu(y)m (y;k)dy, (7.17) directly from (7.1) in the form

nfx;k)= - eu'(-gE,[2ik(x-y)]u(y)n+(y,k)dy, n - Y , ZY It2 r~)' e x p (2 ik (x - y ) | y (.3

(7.18) X.d,(.3

where we have omitted the term exp(2ikx) in (3.12a), since -
this function is not analytic on the upper half z plane with the boundary condition (n 4(x;k )-4 as IxI-oo)

(Re z = x) fork <0 in the sense of(7.3). We note that ifthere y ex-2iky)d 0
is a nontrivial solution of (7.18), then, by the asymptotics of Dj(k )m- ----- - y =0, (7.24)
E,(x),n(xk )-,O(1/x) as jxI--c [i.e., this solution maybe F. \ y- I Y-i

considered to be a bound state for (7.1)]. By the method of which determines the discrete eigenvalues (see below). For
successive approximations, o one can find that if the kernel v < 0, integrating (7.23) by parts, one may see that n k )
K(x,y,k )(2r)-'E, (2ik (x -y)u(y) exp(2ik(x -y)] satis. has a singular point at z := i, and there is no bound state. As a
fies the following square integral conditions, special case of v > 0, we first consider the case v =- n = in-

teger. By a residue calcuiation, one can see that (7.24) is the
SAX)in jK(x,y,k)1dy< ao, Laguerre polynomial of degree n, i.e.,

D. (k) =- (iraV'L. -4k) exp(4k) = 0 for k < 0. Hence

S2(Yl=f)K(x, y'k )12 dX <00, (7.19) there are n real distinct eigenvalues, e.g., for n = 1,
. k, = - ,for n = 2, k 1,2 = - (2 ± V2)/4, and so on. On

s.J f- xk (d the other hand, (7.23) can be written in the form,

and if So < 1, then there is only the trivial solution to (7.18), n(i;k) +i
i.e., n+(x;k) = 0. For real k, the condition S < I gives (7.25)

f: uxll1 dx <44rtk I. (7.20)

Fa ( TABLE !. The eigenvalues of the Fredholm integral equation 17. 1).

This implies that, for given u(x), one may expect to have a .
0. 3. g 10 .5 2.0 2.5 3.0

nontrivial solution for those k satisfying V 0 .0 0.12 " 0.9 2.o 0.42

Ik j <(4r)-'f [ufx)] dx. Inorder to illustrate some of I 1.97 3.41 1.28 2.29
those features (e.g., the existence of nontrivial solutions of 4.69 6,29

(7.18)] of the scattering problem (7. 1), we discuss a simple
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where I "'(x;k) is given by hand, for 6 -- o, we have

expi - 2iky)
I'(x;k) dy G(p;k)- -21 (p), (A3a

- x - -' - 0 (p) 2k (A3b)

where 0 (.) is the usual Heaviside step function. It should benoted that ,(k )-..2kO (k ( for real k, and the negative eigen-
"-' r e + (-2ik)' value in (7.1) corresponds to what happens to, '< - 1/(26)
r-I-- (- n ,"(x;k). (i.e., k is on the edge of the PB) for finite 6. From (A3), we

(7.26) have

Here y., is the constant to be calculated recursively, and G (x, y;k )..--1- -+A dp, (A4a)
I ,"(x;k ) is the exponential integral E [ 2ik (x - i)f which has 21r .ic - 2k
a logarithmic singularity at x = i. However, the coefficient 10 i - 0
of I. in n (x;k) is just the Laguerre polynomial, i.e., G (xy;k - *. J e dp, (A4b)

L,( - 4k) () - ,(7.27) where the contour C ' is taken to be a positive halfp line
I (n -/)I avoiding the singularity p = 2k (see Sec. 7). It is remarkable

which is required to be zero by the condition (7.24). Namely, that (A4b) is just the usual projection operator
the condition (7.24) corresponds to the requirement that P -(-) -J(1 + iH )(.), i.e.,

n -(x;k) is, in fact, analytic in the upper half plane. Thus we G_-__,_______
expect to find an n-soliton solution when v = n (in agree- G -x, y;k )--. 4irik (x - y - i0)
ment with Ref. 11). By direct calculations, one can show that
the solution (7.25) with (7.27) = 0 satisfies (7.18) [i.e., this = [.16(x - y) - ip
shows the existence of the nontrivial solution to the homo- 4k mX-Y
geneous integral equation (7.18)]. For the situation with _(A
v*integer, we note that (7.24) can be expressed by - -(x -Y) (AS)

(Y + We " - aly' [note that P -.) = f - dy P -(x - y)(.)]. Indeed, the
(I - e2-  o 0" dy = 0, (7.28) Green's functions G ± (x, y;k) decompose the scattering

Y problem into two equations:
where(v]denotestheGauss'ssymbol(i.e.,maximuminteger iG X+(x,y;k) + ( + + 1/26)G +(x,yk)= -4 (x-y),
less than v), and the series 1_ 0alY' is the first [v] + I terms (A6a)
of the Taylor expansion of (y + 1)" exp(4ky) around y =0. + 1/26)G -(x, y,k) =A -(x - y), (A6b)
From (7.28), we find that there are n roots of (7.28) when v is
in the range n - I < v'n. We have listed the values of k where the functions A * (x - y) satisfying
versus v in Table 1. A {x -y) + A -{x -y) = 6(x -y)i.e.,A ± is adecomposi-

tion of 6-function) are given by
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APPENDIX A. GREEN'S FUNCTIONS 2- c p , (. + 1/26X1 - e - )

We give here the form of the Green's function (A7b)
G ± (x,yk) in the limits of -,0 and 6--oco for real k. Here we note that for 6-w e, (A7) tend to the usual projec-

For -O, taking C. -. k into account, the Green's func- tion operators,
tion (3.6) with (3.7) becomes

S(1 IX--P t x - A = (AB)G (z, yk)--. .. . _--.L) (Al) t y-. (x )=2x -y±R1J#)"

Wm Jc p p- 2k)
which is the Green's function of the Schrddinger equation of APPENDIX B: ANALYTICITY OF THE JOST FUNCTIONS

V(x;k) - lim W(x;k), i.e., Here we discuss the analytical property of M +(x;k) in
the fundamental sheet (Fs). (The analyticity of ff +(x;k ) can

6(V,. + 2ikV) + uV,0 (A2) be discused in a similar fashion to that considered here.] In

[note V- exp( - ikx) where is in (2.7)]. On the other order to do this, it is convenient to write G + (x, y;k )in the
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explicit form calculated by the residue theorem, i.e., Ifa1(k,&) is less than 1, then (B4) converges and IM (x;k )l is

G k (x, yk) uniformly bounded. For the case, p., ... = (n>O)
for a certain no (i.e., there is a double zero in the upper half

exp(ip. x -y)]O(x -y) plane of the FS), we have

---- __ p __- _ f- ixG 1 (x,y;k)u(y)i dy

(12n, - Ilir .

Herep. (n> -l), in> )are given below (3.7). 23 max'uJ r1  _ _,_I

Firstly, we show that in the upper half plane of the FS, + -[- ±_ _I

G * (x, y;k) [and therefore M + (x;k)] is holomorphic at the Ir 6 o 12n - 11 p. -,p ,I
points on the branch cut corresponding to the edge of the 4 6 61principal branch (PB) in Im k >0. + 32n - I +  -Io)2iJ <

Let ; , • be the point on the branch cut in the upper half where .- _ expresses the sum over n>O except n =no and

plane of the FS. Then there are two points k, k2 (say, Re k, + I. Thus, the convergence of the Neumann series is giv-
< Re k2) on the edge of the PB. such that ; +, (k,) en by a 2 < l,and IM (x;k )I isalsouniformlybounded. In the

=+.(k 2 )- Calculating the two limits of G 1 (x, y;k) in the case ; - 0 (k = 0), we need a different way to estimate
FS (or PB), IM i(x;k )l. Here the estimation of the kernel G (x, y;k )u( y)

lim G (x,y.k) - lira G ,*(x,y;k) (B2a) depends onx. We write the integral equation forM +(x;k ) in
C, C. OiM . k-k, the form

and
M (x;k) = 1 + V(x,y;k)u(yM (y k ) dy

lis G + jx, yk) = lira G + (x, yk), (B2b)

+_ ..+ y;k)u(yjM (y,k)dy. (B6)
we obtain (B2a) = (B2b), since at k1,po = 2k,,p, 2k2, at
k2, Po = 2k2, P i = 2k , and the other poles p, , >n 2) re- where
main the same. Hence, G ' (x, y,k ) does not have the branch e('x '* - "' (
cut in the upper half plane of the FS. It should be noted that Vex, y;k (B7a)

for Im + <0, G ' (x,y,k ) has a branch cut corresponding
to the lower edge of the PB. For G 2+ (x, yk ) [associated with F(x,yk) = G ,"ix,y;k) - V(x,y;k). (Bo)
iV(xk )], similar reasoning suggests that G * (x, y;k ) does not Define 0 (x;k) to be
have the branch cut in the lower half plane of the FS.

Now let us discuss the analyticity of M (x;k) for O(x;k) = I + )F(xy;k)u(y)Miy;k)dy, (B8)

Im ;,>O. In the case ; #p, (n>O) (i.e., there is no double
zero), one can estimate, from (B1), from which we have

f )G 1
4 x,yk)uJy)I dy M (x;k) = 0 (x;k) +f V(x, yk)u(y)M (y;k) dy. (139)

+ . -;' ' .-. f(- dNoting that (B9) is a Volterra integral equation, we have a
26 J;.. I a. (). d resolvent kernel F(x, yk) given by

2 max, I =K(Jxy;k), (BIO)

(B3) with

(i.e., the kernel can be estimated by a constant which depends r
on 6, maxiui and f-:. . Jul dx). Then, by the method of suc- K')(x,y~k jds V(x'sk "(syk),
cessive approximation, we have the Neumann series for K "'(x, y;k) - V(x, yk )u(y), (1311)
IM (x;k)) in the form

IM +(x;k) I,< l + F{ IGj(xyk)u(Y)I dy and M '(x;k) is given by

M ix;k) - 0(x;k) + f r (x,yk) (yk) dy. (B 12)
+ J dy1J dy2)G1x,y'k )u( y,)G(y, y2;k )u(Y2) From (B12), (BB) can be written as a Fredholm integral equa-

tion in the form

<1 +a, +a! + .... 0 (x;k) i 1 +fK (x, yk)O(Jk)dy, (B13)
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whose kernel where

KF(x, ;,k) - F(x, k)u(y) + F(xk )u(s)r(s,y k) ,s 0 (x;k ) W(x;k) exp( - iC x),
and Fk )-=(C. + 1/26) exp( - 26C.)

(B14) -(- C_ + 1/26)exp(26_-= I (-k). Then, forrealk,

[notethatF(x, yk )(andtherdoreK (x, ,k )] hasalogarithmic the Jost functions are defined by
singularity at x = y. By the methodofsuccessive approxima- f(x,k}-.- - , asx--. - , (C2a)
tions for (13), if K(., y'k) satisfies the following g(x;k H- t - , as x- + a, (C2b)
conditions" [note that from r'(k ) = F( - k 1, ifO (x;k) is a solution. then

IK[x,yk)I dy-=l,(x)<ao, for all x, (BlSa) 0 (x; - k) is also a solution]. Then the relations (3.20) and
f - (3.21) become

f IKk(x, gk)12dx #2(y)<I , forally, (BlSb) f(x;k) =a(k)g(x; -k) +b(k)g(x;k), (C3)
- gCx;k ) - a(k lf(x; - k ) + 6*(k lf(x;k ), (C4)

f" f IK (x, gk )12 dX dy < 1, (BlSc) from which we have
.. - a(k)a"(- k) + b(k )b{k) = 1, (CSa)

then the Neumann series of (B13) converges. In the case ak a( - k) + b(k)(k) - 1, (Csb)

k = 0, we have the estimation }K (x, y0), for x #y, a - k) + b (k)F~k) - 1, (0b)

(K (x, y0) < IF(x, y;O)u( y)I and

aik)S( - k) + b (k)al(k) = 0, (C6a)
+ - 1u(Y)If dsIF(xs)u(s)r(sy;0)I d) ( - k) + (k )a(k) = 0. (C6b)

(B16) On the other hand, from (C 1) and its complex conjugate

with equation, we have

6+ -L(M + Ixi) ax
(C7)

Xexp[fl+ -L-x8(x)J .Iu(s)Ids], (1317) By virtue of the relation [0 [' *1 *], we obtain

(2n -I)i 0 = 0" 1 0 *- " ":
+r(k)li dx+ f I+ X 1 2.  (CS)

1 In 1 +exp( - (r/26)Ix- yI] /

2ir I - exp[ - (r/28)Ix -y[] Usingf(x;k)asO (x;k)in(CS),andtakingtheboundarycondi-
(BI8) tion off(x;k) into account, we obtain (3.23). Also comparing

(3.23) with (C5) and (C6), we have (3.22).
2 = '1 + d x u lx. (919)

3 ,J 26 )APPENDIX 13. BOUND STATES
From (B 16), one can see that, for finite 6, if u(x) decays suffi. Here we show that the zeroes ofa(k ) are pure imaginary
ciently rapidly as lxl-.c, then (K(x, gO0) is square integra- and simple.
ble. Moreover the Neumann series converges for given 6and From (2.1), we have
maxlul chosen small enough. Namely, the solution of (B13) a
exists for all x, and therefore M + (x,0) exists. It is interesting i- [ l+ ] -(At -A*)[Io 1
to note that, for the limit -. O with u(x)/8 remaining finite, -

I F(x, yk) tends to zero and (B6) becomes the Volterra equa- . -I'N'*I lot- I. (Dl)
tion of the Schr8dinger equation (see Appendix A). Conse- where *,(x;k|),A, = A (ki), #1=,(k) and Im k, >0. By
quently, these results imply that M +(x;k) is analytic in the virtue of that (# ]*= [ :r ', we have
upper half plane of the FS whenever the Neumann series
converges in this region. (A, -A ?)J ItId+p -sI 11 2 dX _ .

(D2)

APPENDIX C: RELATIONS BETWEEN a(k),b('k)) and From (D2), using the formula ofA and# in terms of the k [see
(l(kh,&()I below (2.2)), we obtain k, = ix,.

For real k, we derive the relations (3.22) and (3.23). In In order to prove a(k,)0 (i.e., k, is a simple), we show

order to do this, it is convenient to consider the following the following relation, for the bound state k =- iK,

form of the scattering problem, C -'m&a/b - f Ix.)2 dx, (D3)
U -I)o - (kk - (CI)

J + + - , whereg(x;fr)isgivenby(C2b),andCisdeflinedin(4.8). From
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(Cl) and its derivative with respect to C', i.e., + r (k) ~ l  d( + f-dx) kW(k.

1449 +(u + 1/26)0 + -r4- +to - (1, is +( E)
[here the dot denotes the derivative with respect t o+, e.g., (E6)

2 = - , exp( - 26C.)], we have, for k - ix, Defining

a. . f(x,k)-(k,1 x)1 (E7a)a- g + . r[ I } 1 1]$xk)--(k,2jx) Y' (E~b)

- 26Ce -W. *-1 , (DS) and by virtue of the boundary conditions offand g, we have
the following orthogonality relations,where € =Jo3/ l~., -,, and wehave usedrF~ix) F(i.

Integrating (DS) over - a to ac, we have
4 ~ ~ ~ -- 0-.Isx: r<md d,)0 k,ljk',2)-2vaik . ; for ra k,k', Ea
i ~~~~ l .:-. BF .," - k, ljix,,2)-=(ix,,llk.2) =O for real k, (Egb)

- 2+e 26. ira A- d + &1 2 O, +K,)-id - 8

(D6)
where we have used [0 [0= [*] :. From (D6) with If the set of the functions [I f(x;k), - co <k< co1,
# -fand the boundary condition off, we have I f(x;tl0 I ' ] is complete in the sense ofL2( - o0 < x < o),

then an arbitrary function h (x) in 42 can be expanded in the
iab * = J (f ;ix)( 2 dx. (D7) following form (that is, the expansion theorem),

Consequently, fromf(x;iK) = bg(x;K), we obtain (D3). h (x) = d:h (k If(x;k) + t hi f(x;$w), (E9)

where /a(k ) and h, are determined by using (ES), i.e.,

APPENDIX E: CLOSURE OF THE JOST FUNCTIONS (k) - h (x)g (x;k) dx, (Ela)
Under the condition of the analyticity for the Jost func- a(k) J ,l

tions considered in Secs. 4-6, we show that the set of the Jost h _ h (x e (X;i,)
functions defined in ( 3. 11) or (3.12) consists of the closure for i, = dx. (E b)
the eigenvalue problem (3.2). We use the scattering problem In order to verify the expansion theorem (E9) it is sufficient
(C1) for convenienc. to show that, for this case, there is an identity operator given

Let us define the adjoint problem of (Cl) in the form in the form ty

-- Ai l + (u + 1/2) 1-=F(k.))}A (El)

where 0 A = 0 A(x;k) is the adjoint solution of 0 (x;k). For
real k,'the Jost functions of (E) are given by I f dC.k. I.

asx---- ao, (E2a) 2r J a(k) k , +El)

g4 (x;k )-OS', as x--+ o. (2b) or
From (C2) and (E2), one can see that

01(x;k)m-$*(x,-k) for real k. (E3)

By virtue of the analytical continuation, we have = f e ( y;,k I(x;k)
0 (x;k)-m*x,-k*) forcomplexk. (E4) 2r N a(k)

Let (k lk') be an inner product defined by + , -((x;i,)

(k lk')inf# (xk)O (x;k') dx = f e.(yrk Wx; - k) dC.

-- I (k lx)(xlk')dx, (MS) b()e(kWxk

where the isymbols are defined by (k 1x) ( x;k) and 2v J.U ak
A N

(x(k)i[((k Ix) ]A - # (x;k). Then for realk, from (CI) and + - Cie (y;KgX;ir). (E12)
(El), we have

[r(k) - F(k')](k Ik') By using the triangular representation of
-i[O 1k )10 (; k ') I I;': N N(x;k ) ,, gx;k ) exp(!C+x),

-r(k)im (" dx + d ()&(k) x-k)-eiC-'+f K(xs)e'~ds, (E13)
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Abstraet We discus some properties of a certain physically interesting nonlinear integro-
differential equation with periodic boundary conditions. It is the natural periodic analogue
of the intermediate long wave equation, and it provides a periodic analogue of the
Benjamin-Ono equation in the appropriate limit. Due to the speciality of the integral
operator, the equation admits a Bicklund transformation, an infinity of motion constants.
etc. Two simple periodic solutions are exhibited. Finally we note that the equation may be
transformed into more than one kind of bilinear equation.

The so-called intermediate long wave (ILW) equation (Joseph 1977, Kubota et al 1978)
can be written in the form (8 > 0)

U, + 5-t ux + 2uu, + (Tu),, = 0 (1)

on -00 < x < 00, where

Tu,--- f coth -(x-0)u(f)df (2)
28 _-. 25

and the integral is evaluated in the principal-value sense. The equation can be solved on
(-0, co) via an inverse scattering transform (isT) (Kodama et al 1981), and has the
analytical structure associated with such equations (Joseph and Egri 1978, Satsuma etal
1979).

The physical derivation of (1) and (2) as a model of the evolution of long internal
waves of moderate amplitude assumes that u(x) has a classical Fourier transform, and
that u vanishes as 1xi-. o. Even so, one may ask whether (1), (2) admit spatially
periodic solutions. This was done by Joseph and Egri (1978), Chen and Lee (1979), and
Nakamura and Matsuno (1980), using formal algebraic methods. Unfortunately, the
solutions so obtained either contain errors or are subject to a limitation that was
obscured by these formal methods.

Alternatively, one may seek an evolution equation for long internal waves of
moderate amplitude that are spatially periodic. Then a derivation similar to the usual
one leads to (1), but in the periodic case (2) is replaced with

Tu - j t(x -, ; 8, L)u(J) d (3a)2 L f-L

I Present address: General Education, Miyazaki Medical College, Kiyotaki. Miyszaki 889-16, Japan.
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782 M J Ablowitz, A S Fokas, J Satsuma and H Segur

where
2 K Kx K

t(x; 8, L) - -KzK) + dn( cs( (3b)

(Actually, the physical derivation naturally leads to the Fourier representation of T,
given in (3c), which is then transformed into (3b).) This derivation also requires that

UI-L u dx - 0, which we always may impose on (1) with (3), because any non-zero mean
may be removed by a Galilean transformation: u'= u + a, x' x + 2at. In (3b), K
denotes the complete elliptic integral of the first kind, Z (a) is Jacobi's zeta function, and
dn(a), cs(a) are Jacobian elliptic functions. These all have modulus k, determined by
the condition that K'(k)/K(k = 8/L, where K'(k) is the associated elliptic integral of
the first kind. (All of these functions are discussed by Byrd and Friedman (1971).) The
purpose of this note is to discuss some of the mathematical structure of (1) with (3).

An alternative, but very useful, representation of t is its Fourier series,(.In~ro l inrx\
t(x; 8, L) = i F_ coth -T--:) exp -- (30)

so that n~r inirx\

Tu -i Y, coth( )- (3d)

where {(4, are the Fourier coefficients of u. This representation follows from the
identities (d Byrd and Freidman 1971, §§ 905.01 and 908.51)

= 2 7r -. q . si n m ~ra \Z (a' My- --w sn K-

cs(a) dn (a)= -gcot2 M - "q sin -
2K 2K K ,~I+q"s- j)

where q - exp(-IrT'/K) exp(-vr/L), and from the formal represtntation (Gel'fand
and Shilov 1964, p 32)

cot 18- 2 sin me.
ni

The usual operator on (-oo, ao) may be recovered simply by replacing the sum in (3d)
with an integral and rescaling. Similarly, we may recover (2) from (3) by letting L - oo, 8
fixed. Then k -1 1, K.* rL/28, and one may show that

1 m~;1 x
t(x; 8, L - ac) coth - (4a)

which reproduces (2). On the other hand, for 8 -- mo, L fixed, we have k -o 0, K -r
and

t(x; a - ,L) -* -cot rx/2L. (4b)

This is the well known Hilbert kernel on (-L, L). With this kernel, (1) is the natural
periodic extension of the Benjamin-Ono equation (Benjamin 1967, Ono 1975). As
one would expect, (1) with (3) reduces to the (periodic) KdV equation if 8 - 0, L fixed.

If u (x) is periodic with period 2L and with zero mean, then (Tu) according to (2) and
to (3) are identical. That this is so may be seen by rewriting (2) in its Fourier transform
representation, and recalling that the Fr of a periodic function is a sum of Dirac delta

;I
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functions (Ge'fand and Shilov 1964). Thus (1) with (3) may be regarded simply as the
most natural way to write the [LW equation when periodic solutions are of interest.

The operator T given in (3) is the most general periodic operator we have found
which satisfies the T conditions':

T(uTv + vTu) - TuTv -uv (TI)

J(uTv + vTu) dx = 0 (T2)

where u, v have zero mean. We find that (T1), (T2) are necessary conditions on the T
operator in order for (1) to have more than the standard number of conserved
quantities. With these conditions the above evolution equations can be expected to be
in the is'r class. Condition (T2) follows from the fact that T(x) is an odd function. To
establish (T1) we use the representation (3c). Calling t., = i coth nfrf/L, and t2,, C,, the
Fourier coefficients of u, v respectively, assuming 40 = 0o = 0 (i.e., zero mean) and using
the convolution theorem, then

0 - ~ ain,,axr(urv)--= t. 7, t.6._.4._.exp -L-
i inx

m , LSinirx\ inirx\-4 . 0 .-. exp -Z- .E¢' - exp -Z-
inrx\

+4a '.... exp -L-

-u(x)v(x)- T(vTu)+(Tu)(Tv) (5)

where we have used the identity

coth A coth B = 1 + coth(A - B)(-coth A + coth B).

The order of summation in (5) may be interchanged if 11a. 1, 1i6.1 exist. This establishes
(Ti).

The need for the T conditions can be seen from the following. The usual [LW
equation on (-co, co) was considered by Satsuma et al (1979). They showed that the
derivations of the constants of motion and of the Blicklund transformation do not
depend on the specific kernel of T, so long as T satisfies conditions (TI) and (T2). This
implies that these formulae will remain valid for equation (1) with (3) since the T
conditions are satisfied. Actually one easily verifies (by differentiation) that the
constants of motion given by Satsuma et al (1979) are also constants of motion of (1)
with (3).

One may use the generalised Miura transformation, u = - V. + i TV + 2 eV) to
derive a generalisation of the so-called modified [Lw equation. Namely if kt[u] = 0
represents (1), and A f[v] = , +(1/8 +X)V, +(TV). + V. eiv +iV (TV), = 0, then
using the T conditions we have

k [u] ekv] (6)

where

0, - (-.+- a, g ')
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Simiiarly it can be proven, by using the results of Fokas and Fuchssteiner (1980) (which
also apply to the above Miura-type transformation) that (1) admits an auto-Bicklund
transformation if and only if (T1), (T2) are satisfied.

The xsT pair used by Kodama et al (1981) is also valid in the period problem.
However, the simple compatibility argument does not indicate the importance of the T
conditions. Namely, consider a linear scattering problem and a sequence of associated
time evolutions of the form

iO + (u-A)* = 140- (7a)

** = Q*,# n - 1, 2,... (7b)

(7a) is to be thought of as a differential Riemann-Hilbert problem to find 4#* (i.e., 0*
are the boundary values of certain analytic functions) given an appropriate function
u(x). For each n, compatibility of (7a) and (7b) yields an evolution equation; namely,
requiring 44 = 4,; and setting all coefficients of 4, -, -, q,'x, etc, to zero after using
(7a) to eliminate derivatives of qi*, gives an algorithmic procedure to determine
compatible equations. The equivalent to the first two equations of the XdV hierarchy
are obtained as follows. First, Q *-, + +A:, whereupon we find A' -A = 0. Taking
A *= Ao = constant, the compatible evolution equation is u, = u.. Second, Q2* =
ia2+iB* 2., iA*, we find B -B-=O, A+-A-=-2iu,. Taking B 2 =Bo=
i(2A + 1/8) = constant, A * -*iu, - (Tu),, the compatible evolution equation is (1),
without need for the T conditions. The underlying reason why such conditions must be
added, and whether, in fact, (3) is the most general singular integral operator satisfying
(T1), (T2) are open questions. Matsuno (1980) has given a different algorithm to
derive such a hierarchy of equations.

Next we consider some special solutions of (1) with (3). For a wave of permanent
form, 8,-- -ca,,, and (1) may be integrated once to

(8B 1 -c)u +u 2 +(Tu), +A = 0 (8)

with A constant. It has been claimed (Joseph and Egri 1978, Chen and Lee 1979) that

-(nr/L) sinh(nrir/L)
cosh(nwrS/L) + cos(nr(x - cO/L(]a

is a solution of (8). Its Fourier series representation is

U - -2[ 4+2 '(-1)' xp(~!j~ cos(!j!i)] (9b)

That (9) does not solve (8) may be seen by computing au/8 from (9a) and (9b), and Tu
from (3d), because, as the reader may verify by direct calculation: 8u/88 = -a(Tu)/Ox.
The correct solution is

-(nir/L) sinh(nff8/L) (10a)
u(x - ct)= osh(nvrS/L) + cos[(nr/L)(x - ct - i46)a

where h < -8. Its Fourier series is
2nW g--o mnnr "mv~ -"10

u(e) - L-E(-1)' sinb(!jh (ine(x i (10b)

and its validity may be verified by computing u/88 from (lOa) and (lOb). This solution
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is complex valued. (The Fourier representations in (9b) and (10b) differ because the
transformation x - x - iO, 40 < 8, moves outside the radius of convergence of (9b).)

More generally, periodic solutions may be obtained systematically via Hirota's
method, revising slightly the methods of Chen and Lee (1979), Nakamura and Matsuno
(1980) and Satsuma andAblowitz (1980). Letf*(x) -f(x * i8), let f(x) be periodic (2L)
and let f(z) be analytic in the rectangle: -L Re(z) L, -8 r.m(z)8. Then by
integrating I f(x - + i8)f(C)dC around this rectangle, one finds that

t" ]Lf(x -z; 8, L)(f (z) -f-(z)] dz = i[f(x) +F(x)] +.Jo (11)

where Jo is an unimportant constant. It follows that if

u(X) =iUF(x)-F-(x)] (12)

where

f(x) - .(ln F*),

and if f(x) is properly analytic, then (1) with (3) becomes a bilinear equation

(iD, + i8_'D - D! + A)F . F- -0 (13)

with the usual notation (e.g. D. a.bm(81 -8,)a(x)b(x')j..,,), and A=A(t). We
emphasise that only those solutions of (13) that are analytic in the rectangle yield
periodic solutions of (1), a fact that was overlooked previously.

The simplest real-valued solution of (1) with (3) was given by Nakamura and
Matsuno (1980). It may be written in the form

u (, ; m )= _iK( Z(- m)) Z ( e ,+ i8); m)] (14a)

where je = x - c: + xo, and m is the modulus. The analyticity condition is that

8/L <K'(m)/K(m) (14b)

or, because 8/L - K'(k)/K(k), that the modulus of T exceeds the modulus of the
solution. The wave speed is a complicated function of m, 8 and L, and is given implicitly
by Nakamura and Matsuno (1980).

Finally, we note that (13) is not the only 'bilinear' equation that may be obtained
from (1), (3). For example, let f(z) have a real period (2L), and be analytic in
-L Re(z) L, -8 1Im(z) 8 except for two poles at z =zo and z*(0 < Im(zo)< 3)
with residues b and b*. Then the integral of I t(x - C + i8)f(C)dC around the rectangle
yields
i L

i l. t(x - z)[r(z)-f(z)] dz - ill(x) +f-(x)] + Jo

L-[bt(x- z 0+i8)+ bt(x- z*+i)] (15)

instead of (11). In this case, (12) changes (1) with (3) into
{iD, + (i/S)D. - D + A + (r/L)[b8,2t(x - zo + i8) + b*ba (x - z* + ib)])F . F- -0.

(16)

4"
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The analyticity requirement is that F(z) should be analytic in the usual rectangle except
for simple branch points at Zo and zo, so that f* has poles. We have not determined
whether (15) yields any solutions of (1), (3) that are not available via (13).

This work was partially supported by the Air Force Office of Scientific Research, USAF
and by the Office of Naval Research, Mathematics and Fluid Dynamics Programs.
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ON A UNIFIED APPROACH TO TRANSFORMATIONS AND ELEMENTARY

SOLUTIONS OF PAINLEVE EQUATIONS

by

A. S. Fokas and M. J. Ablowitz
Department of Mathematics and Computer Science

Clarkson College of Technology
Potsdam, New York 13676 U.S.A

Abstract

An algorithmic method is developed for investigating the transformation

properties of second order equations of Painlev6 type. This method, which utilizes

the singularity structure of these equations, yields explicit transformations

which relate solutions of the Painleve equations II-VI, with different parameters.

These transformations easily generate rational and other elementary solutions of

the equations. The relationship between Painlev6 equations and certain new equa-

tions quadratic in the second derivative of Painleve type is also discussed.

§1. Introduction

We say that an equation is of Painlevg type if all its solutions possess

the Painleve property, i.e. their only singularities are poles or nonmovable critical

points (1]. The most well known second order equations of Painleve type are

the so called six Painlev6 equations, PI-PVI (1], discovered by Painleve [2] and

his school [3] at the turn of the century. They classified all equations of the

form w" a F(w',w,z) where F is rational in w', algebraic in w, and locally analy-

t tic in z, which have the Pinlev6 property. They found that, within a W~bious

-7!
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[4] transformation, there exist fifty such equations. Distinguished amongst these

fifty equations are PI-PVI. Any other of the fifty equations can either be

integrated in terms of known functions or can be reduced to one of these six

equations. Although PI-PVI where first discovered from strictly mathematical con-

siderations, they have recently appeared in several physical applications (see for

example [5], [6], [7]).

Explicit transformations and relevant exact solutions admitted by the Painleve

equations first appeared in the Soviet literature [8] and are summarized in [9];

the main points are as foli3,ws:

i) For certain choices of the parameters, PII-V admit one-parameter families of

solutions expressible in terms of the classical transcendental functions Airy

(3], [10], Bessel [11], Weber-Hermite [12] and Whittaker [13] respectively.

ii) P1l-V admit transformations (see [14] to [17]) which map solutions of a given

Painleve equation to solutions of the same equation but with different values

of the parameters.

iii) Using ii) one can construct (for certain choices of the parameters) various

elementary solutions of PII-V. These solutions are either rational or are

functions which are related (through repeated differentiations and multiplica-

tions) to the above mentioned classical transcendental functions.

iv) For PVZ it was only known that, for a certain single choice of its parameters,

it admits a one-parameter family of solutions expressible in terms of hyper-

geometric functions [18].

However, the above results apparently were obtained by rather adhoc methods.

Moreover, it spite of the extensive amount of research on Painlev6 equations,

the transformation properties of PVI were not found. Also, no other one-parameter

family of solutions of PVI was found, save for the one mentioned above. It is

L



important to note that PVI is in a sense the most general Painlevg equation since

it contains the other five as limiting cases E1].

In this paper:

1) We develop an algorithmic method for systematically investigating the

transformation properties of second order equations of the Painlev6 type. This

method yields explicit transformations: a) Between a given Painlevg equation

and the same Painlev4 equation but with different values of its parameters. 8)

Between two different Painlev6 equations (for example PIII and PV). y) Between

a Painlevg equation of the type investigated by Painlev6 (i.e. linear in the second

derivative) and an equation of the Painleve type which is quadratic in the second

derivative.

2) As an application of this method we rederive the known transformation

properties of PII-V and also derive the transformation properties of PVI. The

latter are used to obtain (for various choices of parameters) one-parameter families

of solutions of PVI. Amongst these solutions are rational solutions as well as

solutions which are related (through repeated differentiations and multiplications)

to hypergeometric functions.

3) We relate PIII and PVI with certain new equations quadratic in the

second derivative and of the Painleve type.
d

Some of the results concerning PVI have been announced in [19].

The connection with inverse scattering and monodromy preserving transformations.

In recent years considerable interest has developed in Painlev6 equations.

Ablowitz (Ramani) and Segur [20], (.[21]) have discovered a deep connection between equations

of Painlev6 type and the PDE's solvable by the inverse scattering transform

[22]. For example PH1 and special cases of PIII and PIV may be obtained from the

similarity reduction of the modified Korteweg-deVries, the sine-Gordon and the

..... , .. -- m m mmmmk mm
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nonlinear Schr.dinger equations respectively. It is interesting that proper re-

ductions of the Korteweg-deVries (KdV) equation lead to both PI and PII:

i) KdV and PII

Consider the KdV equation in the form

ut + 6UUx Xxx O. (1.1)

Equation (1.1) is clearly invariant under the group of transformations x' = Xx,

t,= 3tU, u' X -2u, where X is some arbitrary parameter. The solutions of (1.1)

invariant under this group of transformations (the so called similarity solutions)

are characterized by u = (3t)' 2/3U(z), z x(3t) 1/3, where U(z) satisfies

K1 (U) = U"' + 6UU' - (2U + zU') = 0. (1.2)

Whitham [23] has noted that equation (1.2) is related to PII. Actually there is

a one to one correspondence between the integrated form of (1.2) and PII. Equation

(1.2) can be integrated once using the following indentity

((2U-z)K 2((U)]' = (2U-z)K1 (U), (1.3)

where

KM(U) = U" + 2U2 - zU + 2U-z (1.4)

Equation (1.4) is essentially equation XXIV of [1] and is related by a one to one

map with PH1 (see §3).

ii) KdV and PI

Equation (1.1) is also invariant under the group of transformations

X
X a X + 6X, t' - t + U, u' - U + (l.S)

where X and a are arbitrary parameters. Regarding a fixed, one immediately [24]

obtain the following characterization for the solutions of (1.1) invariant under

(1.S):

u a at + U(z), z * x - Rt 2, (1.6)

a ..
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where

U'" + 6LU' * a = 0. (1.7)

Equation (1.7), upon integration yields PI.

Using the ideas of Ablowitz and Segur one can characterize a non-elementary

one parameter family of solutions of, say, (1.2) through a Gel'fand-Levitan linear

integral equation of the Fredholm type. Recently we have proposed a new method

[25] for linearizing the Painleve equations, using singular integral equations

and Riemann-Hilbert theory. In this way we have characterized a three parameter

family of solutions of (1.2). This work suggests that the transformations given

in this paper may be useful in obtaining the general solution of, say, PII

using our method. Important is the fact that using these transformations one can

find the general solution of a given Painlev6 equation for arbitrary values of its

parameters a,'provided one knows the general solution of this equation for a

range of a only. For example, for PII one needs to know the general solution only

for -1/2 < a < 1/2.

We also note that there is a close connection between ODE's of Painlev6 type

and mondoromy preserving deformations. This was emphasized and used by Flaschka

and Newell [26] and by Sato, Miwa, Jimbo and their cowc:r'ars [27]. In particular,

Flaschka and Newell derived a formal system of linear singular integral equations

from which the solutions of PII and of a special case of PIII are to be found.

However, they did not investigate in general the question of existence of solutions

of their integral equations.

From the above comments one sees the richness and broad mathematical content

associated with the investigation of Painlev6 equations. Undoubtedly, consider-

able research will continue in this area.

-.- .1-
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§2. A Method for Investigating the Transformation Properties

of Second Order Equations of the Painlev6 Type

Suppose we are given one of the fifty equations found by Painleve and his

school, which we write in the form

v" a P1v'
2 + P2v + P30 (2.1)

where PV. P21 P3 depend on v,z and a set of parameters denoted here by a .

The first problem is to find the discrete Lie-point symmetries of (2.1),

i.e., to find transformations of the form

v(z;a) M F(v(z;..,z), (2.2)

where the function F is such that if v(z;D solves (2.1) with parameters a, then

v(z;ct) solves (2.1) with parameters a. Using the singularity structure of (2.1),

the procedure of finding such transformations is immensely simplified: Since the

only transformation of the type (2.2) preserving the Painlev6 property is the

t4bious transformation, one immediately replaces (2.2) by

a v + a
1 2(23- a3v + a4'2.3)

where a 1.... a4 are functions of z only. Using (2.3) the Lie-point discrete

symmetries of (2.1) are easily obtained.

Having obtained the Lie-point symmetries of (2.1) one may look for generalized

discrete symmetries of (2.1) [283, i.e. for transformations of the form

v(z;a) = F(v'(z;l), v(zic_), z) . (2.4)

However, since we are not only interested in finding transformations relating the

same equation, but also relating two different equations of Painleve type, we

replace (2.4) by

u(z;a) = F(v'(z;S), v(z;a),z). (2.S)

where F is such that u satisfies some second order equation of the Painleve type.

i
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The only transformation of the type (2.5), linear in v' [29], preserving the

Painlev6 property is the one involving the Riccati equation, i.e.

2
u v'+av +bv+c

u(z;a) 2 (2.6)dv +ev+f

where a,b,...,f depend on z only. Equation (2.6) plays a central role in our

analysis.

The algorithm

Given equation (2.1) determine a,...,f by requiring that (2.6) defines a

one to one invertible map between solutions v of (2.1) and solutions u of some

second order equation of the Painlev6 type. In this process the latter equation

is completely determined.

Let us be more specific. Introducing the notation

J = dv2 + ev + f, Y = av2 + bv + c, (2.7)

differentiating (2.6), and using (2.1) to replace v" and (2.6) to replace v', one

obtains

Jul [P 1J2 _ 2dJv - eJ]u 2 + [-2P 1JY + JP2 + 2avJ + bJ + 2dvY + eY

(2.8)

- (d'v2  e'v + f')]u * [P1Y - P2 Y + P3  2avY - bY + a'v2 + b'v + c'].

There are two cases to be distinguished:

A) Find a,...,f such that (2.8) reduces to a linear equation for v,

A(u',u,z)v + B(u',u,z) - 0. (2.9)
B

Having determined a,...,f upon substitution of v - in (2.6) one determines

the equation for u, which is of the same type as (2.1) (i.e. it will be one of the

fifty equations mentioned above).

B) Find a,...,f such that (2.8) reduces to a quadratic equation for v,

.. . -. -



A~u',u,z)v 2 B(u,,z)V + CQu'u,z) =0. (2.10)

Then (2.6) yields an equation for U. which is quadratic in the second

derivative. These types of equations, having the Painlevi property have not

previously been considered in the literature.

Note that i) It turns out that PI1-V admit transformations of both types

A) and B). However, PVI does not admit a transformation of the type A) above.

ii) Utilizing the way that the parameters a enter in the equation for u one can

find a transformation relating equation (2.1) with different ct's.

iii) When equations (2.9) and/or (2.10) break down (i.e. A = B = C = 0), they de-

fine one-parameter families of solutions of (2.1). Using these solutions and the

transformation properties of (2.1) new one-parameter families of solutions can be

obtained.

These points will be clarified after applying the above method to PII.

53. Painleve' II

In this section we use Painleve II to illustrate: a) How the transformation

(2.6) can be used for investigating the transformation properties of a given

equation. 8) How certain of these transformation properties can be used for

obtaining elementary solutions.

Note that i) Here we look only for transformations of the type A), i.e. we

invoke (2.9). This is only for convenience. We stress that transformations of

the type B), (see (2.10)) exist for all PII-PVI. In this paper -- shall consider

such transformations by. necessity for PVI (since transformations.A) do not exist

in this case) and for an aid to the reader for 0111.

ii) Painlevi and his school found that some of the fifty equations mentioned in R1

are related to PI-PVI. For example equations XXXIV, XXXV, XLV, XLVI, XLVII of (1]
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are related to PII. An exhaustive investigation of transformations A), not only

establishes this relationship, but also gives a one to one correspondence between

PII and each of the above equations. However, here we only present the relevant

result for XXXIV and also comment on XXXV. We note that if one is simply interested

in finding a transformation mapping PII to PII then any of the above tvansforma-

tions may be used.

Theorem 3.1

Let v(z;) be a solution of PII

v" = 2v3 + zv + a. (3.1)

Then v(z;) are also solutions of PII, where

v(z;&) = - v(z;); & = -a, (3.2)

v(z;a) v(z;a) 2 ct 1 (3.3)2v2+2v' +z

The case a = - 1/2 is considered in Lemma 3.1.

Theorem 3.2

Let v(z;a) be a solution of PII and let u(z;v) be a solution of

+ 2u2 - zu + v+uO-(u')2  0; v = a(a+l). (3.4)
2u-z

Then there exists the following one to one correspondence between solutions of

(3.1) and (3.4)
-2 u'+a (5

u - -VI - v2, V- u---a (3.S)
u V , v 2u-z

Equation (3.4) under the transformation w a (u - z/2)/(4a~l) reduces to XXXIV of [I].

LeaM 3.1

P11 admits a one-parameter family of solutions characterized by

v' + V2 + z/2 -0, (3.6)

'iff a -1/2.

TV" M-
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Derivation of the above results

Comp.-ing (3.1) and (2.1) one finds that P1  P2 = 0 and P3 = 2v3 + zv + a.

In considering equation (2.8) one has to consider separately the two cases of

d - 0 or d 0 0. Here we only consider d = 0. Then (2.8) becomes

S3aev2 +(2af+2eb-e')v+(bf+ec-f'
1 ]u+

U, - "eu2 + ev+f

r2(l-a2 )v 3+(a'-3ab)v 2 +(z+b'-b -2ac)v+(a-bcc') (3.7)L ev+f

Our goal now is to choose a,b,c,e,f in such a way that (3.7) becomes a linear

equation for v. It is clear that this will be the case if each of the above

brackets (i.e. the coefficient of u and the term independent of u) is linear in v.

Then, it is obvious that a 2=1 and that also ev+f must devide each numerator appear-

ing in the above brackets. Demanding this to be the case with e # 0, one is lead

to establish a one to one correspondence between PII and XXXV of [1]. However,

a simpler possible case is e = 0. Then, it is clear from equation (2.6) that one

may take, without loss of generality, f - -1 (the minus sign is only for relating

u directly to (1.4)) and c - 0, since one can always "absorb" them in u by a

Wbious transformation. Hence, inserting c = d = e = 0, f = -1 in (3.7), this

equation reduces to

ut (2av * b)u + 3abv - (z + b'-b 2)v -CL. (3.8)

Thus necessarily b - 0. Hence, equations (2.6) and (3.8) imply

(u'+e) = v(2au - z), u • -(v'+av 2); a 2.1. (3.9)

Taking for convenience a - 1 and substituting v * (u'e+)/(2u-z) in the above ex-

pression for u, equation (3.4) follows.

_ _ _ _ _ _ _ _ _ _ _n
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i) i- - l/2

The transformation (3.Sb) breaks down iff u = z/2. But then a + u' must be

zero, or i * - 1/2. (Actually one can easily check that u - z/2, a = -1/2 solve

(3.4)). Hence equation (3.Sa) implies Lemma 3.1.

ii) The transformation from PII to PII

Using the above results (i.e. the results of Theore* 3.2) one can easily

derive (3.3). The basic idea is to exploit the fact that v in (3.4) is quadratic

in a. Therefore, there exist two values of the parameter a, namely a and -(Ca+l)

which give the same value of V and hence the same value of u, i.e.

u(z;a) - u(z; - (CL+l)). But then

u'(z;-(Lel))-(al) u'(z;a)-(a+l) = v(zia) (2cil)

2u(z;-(al)-z = 2u(z;a)-z 2u(z;a)-z

Hence, replacing u by -(v2+v') and v(z;-(1+l)) by -v(z;(a+l)), equation (3.3)

follows.

How to obtain elementary solutions

The transformations (3.2) and (3.3) can be used to obtain all known elementary

solutions of PII. Similarly, one can use transformations (3.5) to obtain element-

ary solutions of equation (3.4). First note that (3.3), (3.5) imply that

i(z;-a) = u(z;a-1) (3.10)

ru, (z;a) (al2
u(z;a+l) * -u(z;a) - 2 u(z;a)-z ) (3.11)Zu(z;ci)-z

i) Rational solutions of PII.

It is clear that v=O, cL-O solve P11. Then using (3.3) one can obtain a

rational solution of PII for every positive integer:

I1 1 3z2

v(z;O) O, v(z;l) I , v(z;2) 1 z3 4 (3.12)

'~ _3+4l
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Then equation (3.2) generates a rational solution for every negative integer.

ii) Rational solutions of (3.4).

u a 0, a = 0 solve equation (3.4). Then (3.10), (3.11) imply similar re-

sults as i) above:

2 6z(z -8)
u(z;O) = 0, u(z;l) = -- , u(z;2) - 2. (3.13)

z (z +z)

Note that the hierarchies of solutions (3.12) and (3.13) are related by the

transformations (3.S).

iii) Airy type solutions of PII.

Lemma 3.1 implies that v(z; - 1) = y,/y is a solution of PII, where y is any

solution of the Airy equation y" (z/2)y = 0. One can not use directly this solu-

tion in (3.3) to generate new solutions, because in this case (3.3) breaks down.

The trick is to first use (3.2) and then (3.3). In this way one generates the

following hierarchy of solutions:

V(Z; -1 V ,y'/y, 1(;I = 'Y -(;I yt ' - 2 .. (3.14)
2y' +zy

iv) Airy type solutions of (3.4).

Similarly as above

1 1 2' 1 zu(z; - - z/2, u(z; V * - 2 -
y

Remarks

1. The resurlts of Theorem 3.1 and Lemma 3.1 were first given in [14] and [3]

respectively. The result of Theorem 3.1 was rederived later in (30] and (31] by

exploiting the connection with the inverse scattering of the KdV equation.

2. We emphasize that the logical steps used here for t) deriving (3.4) and (3.5),

. . ... -- .... I
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8) exploiting the quadratic dependence of v on a to obtain (3.3), y) character-

izing one-parameter families of solutions of PII when the transformation (3.5)

breaks down and 6) generating elementary solutions, remain valid for considering

all Painlev' equations PII-PVI.

§4. Painlev6 III

In this section we consider PIII. Having familiarized the reader with our

method we now present both types of transformations A) and B).

Theorem 4.1

Let v(z;ci,B,y,6) be a solution of PIll

vjjX 2 _ 1 2
v,,= - iv , +a) + Yv + (4.1)v z z V Z

Then v(z;c, ,y,3) are also solutions of Pill, where

Cz;o&,Bj,3) a -vCz;cL,8,y,6); c. = -c,, = -8, Y a y, 3 - 6, (4.2)

[v(z;CiB,y,6)]l; & -a, = -cl, -y -6, 3 = -y, (4.3)

_1/2 2 + B(6) 1/2 +C (y) -1/2
Cz;&.,,3,) 1/ V[1 + V1 7- (4.4a)1C2 -1/2+ C-63).l__-l 2 ,

Y z(-+-Y V

1/_12, -1/2 161/2( 1/2 1/2= 1/2 y1/2-(2+0(-6)- Cy1  - [2+cc'T1 , C-4) = C2)

1/2Y (31/72-6
-, Y

(4.4b)

In (4.4) we have assumed that

Y 4 0 and 2 + 1acy)-1/2 + V6 1/2 0. (4.4c)

If Y 0 then (4.4) is replaced by
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V 1/2v z(-6) 1/2 (4.a)
v V

& C-61/2,  ( 2-aC-6) 1/2), = 2 (4.5b)

The case 2 + B(-6) 1 / 2 + (y)-/2 = 0 is considered in Lemma 4.1.

Theorem 4.2

Let v(z;(,8,1,6) (32] be a solution of PII and let w(x;a,a,j,O) be a solution

of PV,

d2w 3w-1 dw 2 1 dw * (w-)_- (4) 1/2wdx 2  + w+w-1) x "2 (4.6a)

where 2 2
X1 - , 1-OL-P)2  y =4 1_/2 U z[+(S /2]
2 322 32 ' = =

(4.6b)

Then there exists the following one to one correspondence between solutions of

(4.1) and (4.6)

v'(w-1) + (w+l)v2 + [,V + (-6)1/2](w-1) = 0

(4.7)

zv w w' + (laQ-_)w - +
w2

Theorem 4.3

Let v(z;a,$,y,6) be a solution of PIII and let o(z;c,aT) be a solution of

+ +~. or2 &2V + PO 2~ + *0+); (4.9a)
z

p * 4y 1/2 (-6)1/2, a- 4 [aC-6)1/2_6 1/2], T -4(=+y1/2)[0+(-6)1/2

(4.8b)

Then there exists the following one to one correspondence between solutions of

(4.1) and (4.8)
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!I , v' 1y/2v  (4,~~ -- V +(-12

z V V

v = ,y//2)' (4.9)2 (y1/20 +a + Y/)

provided that neither 8 - 6 - 0, nor a = y = 0, nor 2 + -1/ 2 + (- / 2  0.

These exceptional cases are considered below.

Lemma 4.1

Pill admits a one-parameter family of solutions characterized by

1- '/ v1/2 / -6 1/2
(=-Ct 2LL + x l/2+ (4 , (4.10)

z vY

if£f

2 + ay.1/2 + V6- 1/2 = 0.

Lemm 4.2

The general solution of PIII in the case that B =6 =0 is given by

V 1 = I.n z + c2 , (4.11)
Y 1/~ ~ 2 + 1)2-Cf!Z

where c1 , c2 are arbitrary constants.

Using (4.3) similar results are obtained for the case that a = y = 0.

Remarks

1. The results of Theorem 4.2 and the above Lemma's were first given in [15],

[11], and [33] respectively.

2. One can clearly combine the transformations (4.2)' to (4.4) to obtain new trans-

formations. For example combining (4.3) and (4.4) one can derive the corresponding

result of (15]. Also note that a finite number of products of (4.2) and (4.3)

yields the identity.
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3. Elementary solutions of PIII can be derived in the same manner as in Pit.

Derivation of the above results

In this case P, = 1 P = ,I P . -(ctv2+0) + Y v 3 + -. Thus the coefficient
1 P 2 z z v

of U2 in (2.8) is -(dv 2+f)/v.

a) Requiring (2.8) to be linear in v.

Then the above coefficient of u2 implies that either d = 0 or f = 0. In what

follows we shall consider only the case f = 0. (The result of [15] is derivable

by considering the case d = 0). With f = 0 equation (2.8) becomes

32ad 3 -1 2 -1
u2 zav *(bd+ea-d'-dz )v -(e+ez )v-ec]u .. ], (4.12)

dv2 + ev

where the last bracket is independent of u. The coefficient of u in the above will

2
be linear in v iff dv + ev is a root of the numerator. This implies that e = 0.

Then, without loss of generality we can take d = l and a = 0, since one can always

"absorb" them in u with the aid of a Mo-bious transformation. If e = a = 0 and
2

d - 1 then the term in (4.12) independent of u, is linear in v iff c 2 6 = 0 and

b a -(O+c)/cz. Thus, with the above choices of a,...,f equations (2.6) and (4.12)

yield

v1 b c '61/2, (4.13)
u -2+ +7;c- 4 ("--) (.32 =- +v 2' c = b = c

v v

SUl + (z1-b)u - az " 1(4.14)v= 2"
Y-u

Substitvting (4.14) into (4.13) one obtains an equation for u, namely

U" 0 uU + (4.15)
u -Y

It is then clear that y - 0 is of special interest.
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i) Y O

Then (4.15C) becomes

u 'fZU2 ut 2 a C.a)+c2
U" 3A!-.+2. cB 2

u " -- 2 2(1 + c- .z u Z

Let u * !-to obtain
z

- -2 ~, -2 c- 2

c + (1 *-+ - --a- .(4.16)
z z C v

Equations (4.13) (wth u = v/z) and (4.1-6) imply (4.S).

ii) y 0

Without loss of generality take y = 1. Equation (4.15) must be, within a

M~bious transformation, one of the fifty equations mentioned in the introduction.

Thus let u = (Aw+B)/(Cw+D) to transform (4.15) to

w" = [2C + (Aw+B)(AD-CB) ]w'2 + (4.17)
[(Aw+B) 2 - y(Cw D) ]Cw+D

Hence, if A = B = z, D = -C 1 then w,+ = (1/2w - 1/(w-l))w 2  
.... Therefore,

under the transformation

u= - (w+l) (4.18)
w-1

equation (4.15) becomes

w" 2 (3w-1) w,2 1WI. + (aw + ;) + 2cw, (4.19)

where A, are defined in (4.6b). Letting z - (2x)1/2 in (4.19) and using (4.18)

in (4.13) and (4.15) the result of Theorem 4.2 follows.

iii) 2 + 0(-6) 1/ 2 - y-1/ 2 . 0

The transformation (4.14) breaks down iff u . Then u' + (z -b)u-az

must be zero when u y 1/2. This implies 2 + $(-6) 1 / 2 - ay- /2= 0. Hence, using

V -
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(4.13) one obtains the result of Lemma 4.1.

Using Theorem 4.2 one can obtain (4.4) in a similar way as in obtaining the

corresponding result for P1I. However, we choose to obtain (4.4) using Theorem 4.3,

which is now derived.

8)_ Requiring (2.8) to be quadratic in v.

Take for example d = f = 0. (We remind the reader that our investigation is

not exhaustive.) Then, without loss of generality b = 0 and e = 1. Hence, (2.8)

becomes
2 -l

u =u u2[av - z v-c []u+ [ ].
L Y

The two brackets [ ], in the above equation contain v quadratically iff

a . Y, c2 + 6 = 0. (4.20)

Therefore, with the above choices of a,...,f equations (2.6) and (2.8) yield

v, l/2v  (_ )l/2
= + 1/2 (4.21)

z v V

(y yl1/2)2 - 'v + (B+(-6)1/2 -(4) 1/2) 0, (4.22)

where we have used for convenience the substitution u = */z. Equation (4.22)

yields
272)-, A 2 + p 2 + 00 + T, (4.23)

2(.Yl *+ct~y I)

where p,a,T are defined in (4.8b). Noting that A' = 20'0, where

n "+ 0 + (4.24)

and substituting (4.22) into (4.21) one obtains an equation for *. This equation,

using the fact that

2+ - 4(y1/2,+/[(6)1/2.(.)/2

p.4~~ .(
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takes the form (A1/ 2 + 1')(l/2./z -) = 0, which implies

/2= n. 
(4.25)

z

Therefore, the transformations (4.21) and (4.23) relate PIII and equation (4.25).

Using (4.25) in (4.23) one obtains the result of theorem 4.3.

i) 8=6=0

Then, using (4.21), (4.23) and (4.25) (where we pick the positive root of

A 1/2) we have

. = -12 = 0. (4.26)
z v / ' z

However, the equation for 0 is now very simple and it can be immediately integrated

to z0' = *2/2 e c1. Thus Lemma 4.2 immediately follows.

ii) 2 + ay-/2 8-6) 1/2 = 0

The transformation (4.23) breaks down iff y 1/20 a+yl/2 = 0. But then

' A1 / 2 = 0 which implies 2 + a. " I /2 8(-6) - 1 / 2 = 0. Then, using equation

(4.21) the result of Lemma 4.1 is again derived.

iii) The transformation from PIll to PIll

This transformation is easily obtained by finding two sets of (a,$,y,6}

which give the same values for p,a,T. Solving the equations defining p,o,T

for a,8,6 (keeping y fixed) one finds

l/ 2 = P l/ 2 1r~/ 2 1/ ~-42 2 [S P
(4), M=a- a ' 2- T= (4 2 16/

p 4 2 1 6 4 ( 4 .2 7 )

However, using the definitions of p,o,T it follows that

(2 1/2 1/2 1/2 1/2 2
16 4 (CL(-6) + ey 2y' (-6) ]16 4
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Using the positive root if (4.27) one finds the trivial result

S 1/2 1/2 1/2 /2 ()1/2 12

/) 1/2 (2)1T2
Y 7 17

However, using the negative root, one obtains the expressions for &,a,j appearing

in (4.4b). Then using

+ ,l/2 v(Y 1/2  1/2
2.1/2 - -+1/2. -,1/20+ -+1/2

2(? O+a+y 0+1/ %+?

and replacing € by (4.21), equations (4.4) follow.

§5. Painlevg IV and V

Using our method one can easily find transformations which map PIV and PV

to themselves, but with different values of the parameters. These transformations

were first given in [16] and [17] respectively. Here, for completeness, we give

these transformations and advise the interested reader to derive them himself as

a simple exercise of our method.

Theorem S.1

Let v(z;%,$) be a solution of PIV

v" v 2 + 33 2 2 -l

2v 2 + 4zv + 2(z2-c)v +, 8v -
. (5.1)

Tht.' v(z;&,S) is also a solution of PIV, where

V'"v "(-28)11 2 ; &z,, 112- 2/2 3 C-2
1/21 i = - + (-20)1/2 2,

2v 2
4 L'JJI 2 1 ,(5.2)

provided that

1/2

2

,a-- - 2.- ) 11 -.CS
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Theorem S.2

Let v(z;a,B,y,6) be a solution of PV

+-' - r + l + -T + + (S.4)
z z v z V-1

Then vCz;&, ,', ) is also a solution of PV, where

o2) (1-2) 2 (2) A 1 +

provided that 65 0 0 and

(-261 12 [1-(-26) 112_ (2a) 112 Y. (S.6)

Remarks

1. One can easily find Lie-point discrete symmetries of the above equations. For

example, if v(z;a,B,y,6) solves PV then v = v- (z;-8,-a,-y,6) also solves PV.

2. When the above transformations break down, i.e. when (5.3) and/or (5.6) are vio-

lated then PIV and/or PV just as for P11 and PIll admit one-parameter family of

solutions.

3. Elementary solutions of the above equations can be derived in a similar manner

as in PII.

56. Painlev6 VI

Theorem 6.1

Let v(z;a,8,y,6) be a solution of PVI:

.U__.._.
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+2 +[a+ Z+Q 6Z(

V z2z-) 2  v 2 (v-l)2  (v-z)

(6.1)

Then v(z;a,9,yM are also solutions of PVI, where

;(z; &, j, j, ) zv(1; a, 8, y, 6); =a, 8. y=- 6+I, -y+j, (6.2)

;(z;a, , , ) 1-v(-z; a, B, Y, 6); ;=a, ,-y, ;-, =6, (6.3)

1 1 a ,(z; &, i, ,) - 1-('l-z)v(-j; a, B, Y, 6); a, --i, --, 6=-y+j, (6.4)

(z+1)v -2z
v 2z(z-1) _'+ (Z- .I(- M (6.sa)

K 0

11 -[ 1 2, = - [(2L)l 2 1)2, -= y += Z = (6.5b
2 -]2Y 4 4(.b

In (6.S) 0, I,K,1I are defined by

+v' +-, . (,++I)z1 , l +
2- + 1 Z(z-.) Y T '2 4 (6.6)

I 2 + , (6.7)"

K- (-20)1/2 (2a)1/2-1, X (-28)1/2 +(2)1/2 , V= 4(1-y-6), v= 26-1+(P + E)2

(-8) +2c)K 4 2'

In (6.5) we have assumed that (6.8)

* 0, K #0, v 0. (6.9)

Theorem 6.2

Let v(z;a,B,y,6) be a solution of PVI

and let I(z; K2 , X, 1s V) be a solution of

22 Iv 2"+ I2-K2.$2 )2 (6.10)

z z(z-1)

where 'I

+3 + .I T # (Z+1)0 + X(Z+1) +A(Z- 1), (6.11)
2z -Z-IJT z(z-1) 2 4 2
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and I,K,X,Ij,v are defined by (6.7) and (6.8). Then equations (6.6) and (6.12)

below, express a one to one correspondence between solutions of (6.1) and (6.10)

Az )I + 2 - (z 2 il
v - 2 ,I Kz. 1 (6.12)

Z z z (z-1)

We have assumed that (6.9) is valid.

Lemma 3.1

PVI admits a one-parameter family of solutions characterized by

(X-K-1) =(6.13)zv' *2(z-1) Z_ "[+ + 4 v +  UX+KIYz =]l)=

iff v = 0, K A 0.

This result which is an immediate consequence of theorem 6.2 was first given in

[181. -Note that if

=- 2,---I w - (6.14)

then w satisfies a certain hypergeometric equation.

Derivation of the above results

In deriving the above results we follow the same logical steps as with PIII.

i) The transformation from PVI to (6.10).

2In this case the coefficient of u in (2.8) is

(3/2 v2 - (z+l)v + z/2) 32 _ 2dvJ -eJ.
v(v-l)(v-z)

Therefore, it is impossible to choose a,...,f in such a way that (2.8) reduces to

a linear equation for v. However, by choosing d = f = 0, and then (without loss

of generality) e 1 , b * 0, equation (2.8) reduces to a quadratic equation for

v iff

a (2a) 1/2 (2)/2 (6.15)
z(z-l) ' z-1
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Then (2.6) and (2.8) become

v' + av2 - uv c =0 (6.16)

v+ Bv + C 0, (6.17)

where A, B) C are known functions of u', u, z. Equation (6.17) may be simplified

if one uses the transformation

~ ~~1/2++76 ,^
u + + ; = _ (a+(2a) 1  +=y6) , - kA0, (6.18)

where K,X are defined in (6.8). Replacing u in terms of 0 in (6.16), (6.17) one

obtains
v' 21/2- A 1 -(2 /2 =

vs+ 2-). -" + x V + (-28) 0, (6.19)

Av2 + By + C = 0, (6.20a)

where

- 2 -(Z+1), B zl =K K(Z' Az26.0b-!-.L(I + z~ B = -.-z-- - i , C = -2¢' + .- -Az (6.20b)
z 2z 2 zl zzI ziz_-ii

and I is defined by (6.7). Equations (6.19) and (6.20) are the analogues of

equations (4.21) and (4.22). Equation (620) yields

-B +S-(z--l 1/2 2 2 2
V z ,2 I-2A ; Ac- 2z(z-l)2  (.1

Substituting (6.21) into (6.19) one obtains

1/ + 0 = , 
(6.22)

Z(z-l)

where ',11 are defined by (6.111. (In obtaining this equation it is crucial to note

that A and 12 -K22 are common :"actors.) Therefore, the transformations (6.19),

(6.21) define a one to one correspondence between PVI and (6.22). Note that the

1/two different branches of A /2 in (6.21) correspond to the two different branches

of A1"2 in (6.22). If one wants to get rid of the square root in (6.22), one may
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replace A1/2 in (6.21) by -z(z-l)SI/. Then (6.21) becomes (6.12), and using

(6.12) in (6.22), equation (6.10) follows.

ii) v = 0

The transformation (6.21) breaks down iff A = 0. It then follows (requiring

that -B + (z-l)A 12/z is also zero) that * = 0 and v = 0. Hence, substituting

= 0, v - 0 in (6.19), Lemma 6.1 follows.

iii) The transformation from PVI to PVI.

The trick again is to find two sets of parameters {a,B,y,6} and (A,,,}

which give rise Lo the same 2 ,X,W.v. Hence it is clear that if the set {a,s,y,6}

corresponds to K,X,u,v, then the set , must correspond to -K,X,P,V. Thus

=i 1 ) = 2.1 2KV (6.23)

Similarly for j. Also solving the equations (-2 ) 1/24 (2&) 1/2= (-2B) 1/2+(2a)1
/ 2

and (-20) 1/2 (2E)I1 2-1 = -(-2) l1/2+(2a)1/2+1 one obtains (2&)I1 2= 1 +(-20) I1 2 ,

(-2R)1/ 2 , I +(2a) I/2  Finally, using (6.12) with v replaced by v and K by -K

one obtains (6.5a).

How to obtain elementary solutions

Using theorem 6.1, one may obtain infinite hierarchies of elementary solutions

of PVI. As with PII, it is important to notice that if one starts with the

solution v characterized by Lemma 6.1, one cannot use directly (6.5a) (since in

this case (6.Sa) breaks down); one must first use a Lie-point discrete symmetry

to obtain # newsolution v and then use (6.5a). We also note that the Lie-point

symmetry (6.2) cannot be used, because for this symmetry V - V (hence if v 0,

* 0). If one instead uses the Lie-point symmetry (6.4) one has the. following

result:

i _ _ _ __ _ _ _ _ _ - -i



-26-

Lemma 6.2

Let v(z;a,B,y,6) be the one-parameter family of solutions of (6.13), where

K,Xu are defined by (6.8) and v = 0. Use the transformation (6.4) to evaluate

v(z;a,,6). Then apply to this solution the transformation (6.5aj to obtain a

new one-parameter family of solutions v of PVI, with parameters

- 1 (8 2 - - +al1) , + , 6 = + (6.24a)
2 -2 1 ' "' 4 4'

where
i - 1= -+ i ^(2= l , ̂ ~2,l' (6.24b)

, L = -, y = , - y 1, and a (2a ) / 2 , 1=(-26) (6/

Example 6.1

The solution of equation (6.13) is in general expressible in terms of the

hypergeometric functions. Hence, using the above Lemma one can obtain an infinite

hierarchy of one-parameter family of solutions of PVI, all of which are related

(through the repeated application of (6.5a)) to these hypergeometric functions.

However, for some special choices of the parameters a,8,y,6 equation (6.13) becomes

very simple. In this case one may for example derive infinite hierarchies of

rptional solutions. Let us pick such a choice in order to illustrate our results.

Let a = B = 0, y - 1/2, 6 = -3/2. Then, using (6.8) K = -1; , = 0, U =-6, v = 0.

Therefore, since v = 0, PVI must admit a one-parameter family of solutions char-

acterized by (6.13). Actually in this case (6.13) reduces to zv' + v = 0 and

hence v - T/z, T some arbitrary constant. Now starting with

v = T/z; a = 8 0, y = 1/2, 6 = -3/2 (6.25)

in (6.4), one finds

-tlz
2  ~ ,Av I T(l-z) a y 6 = -2. (6.26)

Then, using (6.8), either
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K= , X = 2, p = 2, -= 0 or K = -3, X= -2, B = -2/3, v = 16/9.

The first choice used in (6.13) rederives v, however, the second choice (used in

(6.5)) yields

vu 2 _ 2Tz + -l) , = , _ =, 1 (6.27)
3 22P 2' ' 2 2

2Tz - 3Tz + T-1

One can verify directly that the functions v, v and v, as defined by equations

(6.25), (6.26) and (6.27) respectively, satisfy PVI.

Remarks

1) The transformation (6.4) is the product of the transformations (6.2) and

(6.3). Similary one can obtain a transformation as the product of (6.3) and

(6.2).

2) It is worth noting that one cannot use just the Lie-point discrete symmetries

(i.e. equations (6.2) to (6.4)) to generate an infinite hierarchy of exact solutions.

This, which is consistent with [28], follows from the fact that a finite number

of products of these transformations yields the identity. For example, one obtains

the identity after the repeated application of (6.4) three times.
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The Kadomtsev-Petviashvlli (KP) equation 1]

(ut+6UUx+Uxxx)x 3u~y (1)

is a natural generalization of the Korteweg-deVries (KdV) equation to two space

dimensions. The KP equation, like its descendant the celebrated KdV equation, arises

generically in physical contexts. Namely, unidirectional, weak (quadratic) non-

linear disturbances perturbed from a two-spatial dimensional wave equation with weak

halanced fourth order dispersion always yields KP [2]. As a result of both its physical

significance as well as its mathematical importance, being a multidimensional "exactly

solvable" equation, it has been investigated extensively. In particular: i) soliton

solutions of KdV also solve KP but they are non decaying at infinity and are linearly

unstable (for the signs chosen in (1)) [1]; ii) KP possesses a "Lax pair" [3) (see below);

iii) a variety of explicit solutions of KP can be obtained (e.g. via the "direct

approach" of [4]). iv) KP admits solitons, the so-called "lumps" [5] which decay

algebraically (in both space dimensions) and which are not contained in the Gel'fand-

Levitan-Marchenko (GLM) formulation.

Significant results associated with the initial value problem of the KP

equation are contained in [6], (7] where for a restricted class of initi-l data, the

initial value problem of KP is solved via a GLM equation. However: I) The above GLM

equation is defined via a certain function f(k,z). Relating f(k,l) to a scattering

matrix s(k,) is, as it is pointed out in (7], the main difficulty of the inverse problem

associated with the KP. Such a relationship is established in [7] by making use of still

another GLM-type equation. ii) Lumps are excluded in the above formulation (long time

asymptotics were carried out in [8)).

In this letter we a) Simplify the above formalism by giving an explicit

expression for f(kz). b) Extend the above scheme so that the lump solutions are

both incorporated and given a spectral characterization. These results are relevant

to the problem of solving the KP equation with Initial data u(x,yo) - uo(X.y), Uo(X,y)
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given and going to zero rapidly enough as (x2+y2 ) 1/2 (we also assume -Uo(xy)dx = 0C2]

The problem of characterizing solutions corresponding to initial data outside the above

class is considered in part c) of this letter. In this context a very general linear

integral equation is presented. This equation involves an arbitrary measure-contour;

a special choice of this measure-contour yields the solutions characterized in part b).

The problem of relating these far more general solutions to initial values outside the

range of the inverse scattering class is open.

The Lax pair of KP can be taken in the form [3]

ipy+pxx+2ikux+uu = 0, (2)

ivt+4uxxx+l2ikuxx-12k2 ix+6ux+3ikuu+3iuu+3u xu-3i (2uydX')u = 0. (3)

Manakov [7 ] introduces z+,u" which are those solutions of (2) which also satisfy

the following integral equations

p ± (x,yt,k) = 1 + G±u(&,n,t)exp[im(x-&)-im(m+2k)(y-n)]p±(&,nt,k), (4)±

where +'(i/2v)(-7dn7dm7 d +jffdndm!d&) and 6G'0/2r)(-Nno dm7 d&+Y d7dm d).y o &. . Y f- a - " o.. .

It is clear that the kernel of equation (4)+ is a (+) function with respect to k, i.e.

it may be analytically continued in the upper half k-plane. Similarly the kernel of

equation (4)" is a (-) function. Manakov [7) then postulates the equation (hereafter

for simplicity of notation we shall use PW(k) to replace u± (x,y,t,k))

p = +) (k)+7.f(k,,t)exrfe(L,k.x,y3 (L)dt, (5)
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where e(t,kx,y).i(z-k)xi(.t2_k2 )y, and through a series of ingenious steps he

relates f(k,zt)to standard scattering data through certain GLM-type
+ -

equations in scattering space. Finally, he assumes that P ,u are (+) and (-) functions
respectively and then solves (5) through a GLM equation in physical space.

In this context Segur [9) goes somewhat further by expressing f(k,l,t) through

Volterra integral equations. Here we give an explicit expression for f(k,x,t) in

terms of initial scattering functions.

Let us now discuss (a), (b). We introduce N(x,y,t,k,p) which solves

(2) in k and which also satisfies the integral equation

N(x,y,t,k,p) = ex (ktpsxlyN]Hu(cn~t)exptm(x-&)-tm(m+2k)(y-n)]N(c,n,t,kp), (6)

where d-, e are defined in (4)- and (5) respectively. In general N cannot be extended

off real k,p unless k-p. By manipulating equations (4)+ and by using the crucial

relationship

N(xy,t,k,p) + i+(k)exa(kp,x,y)]- Ip_(z)ex fp(z,p~x~yf(k,z,t) (7)

whee I 7dt+Y dt o k>p, I k
where i - d+dfor d+7d for k<p, it can be shown that equation (5)

k p
is valid with f explicitly given by

f(k,l,t) - sgn(-k)._ u(Q,n,t)N(&,n,t,k,t)dcdn (8)

f~k,~t) -

! " _11
i m , i im m Il - '



Equations (4)± are Fredholm equations of the second type which we assume to

be regular. Let *+(x,y,t) and 0j(x,y,t) denote their homogeneous solutions corre-

sponding to eigenvalues k; and k- respectively (we assume that there exists a finite

number of such eigenvalues and that theyiae all simple). Then Fredholm theory implies
+ -

that u , u" admit the representations:

U±(x,y,t,k) = 1 + -t y + i±(x,y,t,k), (9)±
1 k-k:(t)

where Imkj>O, Imk and u , are (+) and (-) functions respectively with respect to k.

By splitting equation (5) into its (+) and (-) parts, say (5)+ , (5) and

by using (5)" together with (9)± one obtains (we note that it is easily shown that
c (t)=i)

(k) - -
n  + - 1 77f(k,t,t)expf(L,k,x,y)I-()d.dv _ 1. (10)U-I --- +  " - -2--~i

i k-k -k- V-k+ie

±

If one assumes that there are no homogeneous solutions of (4)± then 4 0 and

equation (10) defines a Fredholm equation for p-. Actually in this case by using

iexpp[i(k-v-ic)Jd& - exp~ix(k-v)]/(k-v-t1E, multiplying equation (10) by

f(k,k')exp[i(kx-k'x')-i(k 2-k'2 )y and by integrating over dkdk' one directly obtains

the GLM equation given in [7]. However, in general *#0. Then in order to solve

(10) one needs some more information about the relation of 0 and u±. This information

is'as follows:

kJ (x-jyj 4 i(t))(1

--
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Hence (10) and the equation for .+(k) analogous to (10) yield (as k4-l)

(x2kyj±±t €-i l .( jKL k+ ) f( ±jE,t)ex*i(jE,k ,x~yI-p(j~dLdvvk
(x-2k±y+y±(t))f±-i --Lt+ +  " 77  - aI (12)

where * means summation from i-l to n unless any of the denominators vanishes.

Equations (10) and (12) -+ completely characterize the inverse problem associated with

(2) in terms of the "scattering data" k'(t), ±y(t), j-l,...n, f(kzt).

The evolution of the scattering data is very simple: k are constant in time,

y (t) = 12(k±) t+y.(0), f(k,L,t) - f(k,x,O)exfi( 3.k3)tJ Hence given u(x,y,O)

the scattering data need only be evaluated at t=O and equations (10), (12)± yield

-(x,y,t,k), *(x, y,t). Finally u(x,y,t) is obtained from

u(x,y,t) x2 (,+,)4-77 f(k,,t)ex e(t,k,x,y '(t)dtdk (13)

(equation (13) can be obtained from (10) asymptotically as k-).

The lump solutions correspond to f(k,z,O) - 0 and are then characterized

through the system of linear algebraic equations (12)±.

We now discuss c). Let u(x,y,t,k) be a solution of the linear

integral equation

p(x,y,t,k) + ijw(x,y,t,k,z,v)h(x,yt,L)di(L,v) w v(x,y,tk) (14)
L

where the contour, measure L,dc(t,v) are essentially arbitrary, v is any solution ofF:)1(ya+2kax) t+43  1 12k2
F(k)vf.(ay-t0 )v - 0, A(k)v( a +121k a )v - 0,.and w is defined in

terms of v through
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w=exp[§]1d~v(C,Y~t,k)exp[i (k-v)&]+exp~i (z-k)(x-c&)+41t(i3_v 3)t]b

where 8=A(z,k,v,x,y,t)#t(z-k)x-i(z 2-v2 )y+4i(3-v 3 )t and b=b(y,t,k,t,v) is defined by

by+i(t2-k2)b = exr&(t,v,1,y)]Dv x(a)-(k+v)v(a)J,

bt+4i(k 3-v3 )b = -4ex&(L,v,ct,yJ[V xx(a)+i(v+2k)vx(a)-(k +V +vk)v(a)J, v(c)ev(ay,t,k).

Then u also solves both (2), (3)and u solves the KP where

u(xyt) - 2i$-f exa(L,v,vx,y,tj(x,,,tL)dc(tv,) (15)ax I

The proof, although tedious is in the spirit to that used in both [10)

and (11] and is therefore omitted.

We conclude with the following.: i) By manipulation the equations (10),

(12)* can be shown to be a special case of (14) where dc(t,,v) is supported on

all real x,v and -v-k±, j-l,...n. fi) if at = 0,t = v the linearization expressed

by (14) reduces to the linearization of the Benjamin-Ono equation [0]. If ay = 0

then (14) reduces to the linearization of the Korteweg-deVries given in (11).

Mii) In this letter we have concentratedon the KP equation. However, it is evident

that both equations (10), (12)± as well as equation (14) characterize potentials of

the time dependent Schrddinger equation (2) as well.

We feel that the IST scheme employed here andin particular the relationship

between eigenvalues associated with the scattering operator and lump-type solutions

will be maintained in other multidimensional problems. Additional multidimensional

examples are presently under investigation.
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The Benjamin-Ono (BO) equation arises in the context of long internal gravity waves

in a stratified fluid [ 1 ]. Recent discoveries of large amplitude internal waves in

the ocean [ 2 ] anticipate the physical relevance of this equation to oceanographic

applications. Moreover this equation arises in a variety of other circumstances

(e.g. long waves in a stratified shear flow '33).

Mathematically speaking it must be emphasized that the BO equation has distinctly

new features, as will be brought out in the Sub:equent aiscussion. "ne bu equation can

be taken in the form

ut & 2uux +Hu =0; Hv(x) • 1 = vL)d- (1)

where Hv denotes the Hilbert transform of v and Cauchy principal value integrals

are assumed if needed. It has been established that it possesses: a) n soliton

solutions (4], [5]; b) Bicklund transformations, infinitely many conservation laws

and a novel "Lax pair" [6], [7]; c) two non-local operators which generate its

infinitely many commuting symmetries and constants of motion in involution [8]. It:

Lax pair is given by

i4+ + X(s+- ) - -u+ (2)

u 1i -0 21xs± + s± - 2i=u] - -v4±; (u]-± + -u (3)±t x xx x 2i V ,()

where o+(x,t;x) (o') is the limit of a function analytic in the upper (lower) half

z-plane as z-x (z is the complex extension of x); similarly [u)+ , [u]" are analytic

in the upper, lower half z-plane respectively. (x is a constant and is interpreted

as a spectral parameter, v is an arbitrary constant).

In this letter we present a method of solution for the initial value problem

of the 80 equation, i.e. we solve (1) together with u(x,o) - u 0(x)-o sufficiently

rapidly as lxi.-. It has been well established that the inverse scattering

transform (IST), as applied for example to the Korteweg-deVrles equation [9],provides
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powerful method for solving such initial value problems. The fundamental step of

ie IST consists of using the x-portion of the Lax pair to formulate and solve an

inverse scattering problem". The t-portion of the Lax pair plays a far less significant

Ale. However instead of making use of the IST method here, we shall introduce an

Iternative method, referred to here as the direct linearizing transform method.- It will

e seen that in this method fundamental use of the t-portion of the Lax pair is required.

In this letter we concentrate on the (+) functions since with this knowledge

su I'- for the (-) functions can be obtained in a straightforward manner. In any

ise, here we assume that u is real and hence [u]" = -([u]+)*. The method we propose

)r linearizing (1) consists essentially of the following steps.

i) Use equation (2) to express [u] + in terms of t+, the "reflection coefficient"

,(,t),and "normalizing constants"c.(t). Thi's step involves a detailed investigation3

)f equation (2). Namely; a) introduce left, right and discrete "Jost eigenfunctions";

) establish a "scattering relationship" between left and right eigenfunctions;

:) examine the analyticity properties of t+ with respect to A.+m

-4) Use equation (3) to find how B(x,t) and c.(t) evolve in time, then substitute3r
the expression obtained in a) in equation (3)+ to obtain a nonlinear equation for

0 One then directly linearizes this equation.

iii) Use the above linear equation (which replaces the Gel'fand-Levitan-Narchenko

equation) to solve the initial value problem associated with (1).

We first consider i).Equation (2) should be interpreted as a differential

Riemann-Hilbert problem for the analytic functions 4*(z,t,x). Equation (2) describes

the jump condition across the real axis x; it yields unique solutions for *± provided'

one imposes-some boundary conditions as z-m, say, in the upper half-plane. Here we

assume that either, +(z,t,x)-o, or 1, as z--, Imtz)>o. The solution of Riemann-

Hilbert problems is usually given in terms of Fredholm integral equations IO].
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This is also the case here: For arbitrary u(u-o, appropriately as IxJ-) the solution

of (2) with the above boundary conditions exists if x is positive and real. It may be

directly formulated via a Fredholm integral equation of the second type. This

Fredholm equation can have homogeneous solutions for X = N., where X are real

and negative (we assume here that there exist only a finite number of A. ard that

they are simple). We say these "di.screte eigenfunctios" ccrrespond to bound statcs since

+
t -0 as xi-o. (It turns out that these eigenfunction: m%1x. associated with solitons).

Specifically, consider only the (+) functions and let M, A denote left

eigenfunctions, while E, N denote right ones. They are specified by the following

asymptotic behavior,

14+I, F-oe i xx as x ---; A-1 '1-W Ix a s x-)+-. (4)

x!

and thay satisfy

)1 I l\ f 1(Y,t,x)
(x,t,x) Ax + G+(xyA)u(Y t) k (ytA)) dy, (5)

=~~tX )uket dy,~t.

kN(x,t,x)/ eiAXI +  G(x,y,xu~yJ N(ytx)/ dy, (6)

Furthermore, let t. denote the discrete (+) eigenfunctions, then

.(x,t) = I G(x,y,x )u(y't)*j(y~t)dy; x <o. (7)
J-

-.9-"



-4-

:n the above expressions G.. 
G_ are the (+) and (-) parts of the sectionally holo-

norphic function G(x,y,r) = 1/2w 7e(XY)P-P
";) dp, where 4 denotes the complex 

ex-

lim ee

tension of x, i.e. G (x,y,x) 
= P-o(l/2)? ei(x-Y)PI(p-(x±iE))dp 

The line of dis-

continuity of G is given-by the 
positive x axis, hence using Plemelj's 

formulae [1]

G+ G-iexp(i(x-y)x)e(i)where e(x) 
denotes the Heaviside function, i.e. e(x) 

= lX>o;c,A<}0L

In particular for the discrete eigenfunctions 
G+ = G' = G(x,y,x).

By manipulating equations (5) and 
(6) one may establish the following

"s tering relationship"

M f4 + 5(X,t)6(X)N; B(X,t) = i J u(yt)M(ytx)e'iXYdY. (8)

Equations (5). (6), (8) can also be obtained from 
the corresponding equations

associated with the intermediate 
long wave equation rlZa in the 

appropriate limit.

The results of Fredholm theory 
imply that M is a (+) function 

in the 4-plane

((+) with respect to the positive 
real axis) except for possible 

poles. These poles

cr ,spond to homogeneous solutions 
of equation (5). Hence

n cj(t)sj(x't) ...'+(x,t,X). (9)M-x t x I + E -+-A-(x -ttX)--9)

Similarly t + j(t)Ij(x,t)+ (-xt~t) . l~

Then equation (8) implies that 
cj cj. Useful information about u is obtained 

by

taking the (+) part of (8) and 
using (9), (10). One then obtains

(u]+ = "(X,t)N(x,t,X)dX n (x,t)(II)
2 0i

K o
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At this point let us make some remarks about the inverse problem associated with (8).

In order to establish that equation (8) defines a Riemann-Hilbert problem one needs to

relate N to R. For the Korteweg-deVries equation for example, N(X) = R(-A) and then

the equation analogous to (8) defines a solvable Riemann-Hilbert problem (the Gel'fand-

Levitan- Marchenko equation is one way to solve this Riemann-Hilbert problem). However,

for the BO equation the relationship is somewhat more complicated. Specifically we

find a(Ne'ix)/ax = F(x,t)e 'XN, where F(A,t) = -7 uNdy/(2Tx). With this additional

knowledge the IST can be implemented, and the results herein verified. This will

be discussed in a future publication.

Let us now consider (ii). Using (8), (9) in (3)+ one easily establishes that
c.(t), (t) are independent of time and that B(X,t) = 8O(x)exp(ix 2t). Using (11) in (3Y'

.1 3 0
one obtains A r T n A^

2N x - iN 2 j i - N =0; N = Ne (12)
0

_A n
2jt " 2tJsx - is. " 2 [ 8 o(z)t(t)d c _J . (13)jt jx jxx 2rij 0 Tkkxoj

0

The above equations Can be written in the concise form

*t " 2X41 - i*xx + 2 f 0(t)dp(t) x, 0 (14)

where 4,3 forX>o, *-,j for X - j, dp(i) - [i CjS(Z-Xj) -(I/2 i)8o(t)e(t)]dL. Before

linearizing equation (14) to its linear part let us first comment on the solitons:

Let a 0 0 then (13) reduces to a system of coupled nonlinear POE's. If one assumes
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at =(x~t) c Ckj(t)/(x-xk(t))then the Calogero-Moser system [13]:

xk  n
SZ (Xk-X1. k-l,...n follows. Hence, using (11) (and its conplcx conjugate)

* "t =l.
ie recovers the well known n-soliton solution of the BO equation. In any event

? may linearize the above system of POE's explicitly. This is a particular case of

ne following result.

Let *(x,t,X) be a solution of

*(xtX) 2 V(x,t,x) - i J (x,t,z)w(x,t,xi)dp(1), (15)

vh( V and W are defined by

L(x)V - zxV-iV = 0 (16

W a ei(x'z)x I V(EtX)e'i(X')dC + B(tXz)ei!X')(xa), (17)

a

Bt + i(L
2- 2 )B - (x+z)V(at,x) + iVx(a,t,x). (18)

T also solves (14). The method only involves operating on (15) with L (X).

The procedure is then similir in spirit to that presented in [14].

Let us now consider iii). At t=O u(x,o) is given, hence N(x,o,) and o.(x,o)

are determined from equations (6) and (7). cj and a 0() - s(x,o) are determined

from equations (8) and (9). Then at t = 0 equation (15) defines a Volterra equation

for V(x,o,x):

X

V(x,o,x) - I f V('°,ox)ex(x'&)F(x,')d = a(x,o,x), (19)

a

where F(x,&) 7.*(x,o,)e'it(x')dP(0) and
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o(xo,x) = *(x,o,x) -i7 B(o,A, )ei(A-)(x'a)(x,o,)dp(t). Having obtained v(x,o,A),

equation (16) yields V(x,t,x). Hence equation (15) (a Fredholm equation) defines

*(x,tx) and finally equation (11) defines [u] + "

We conclude with the following remarks: a) In the case of pure solitons ((3=0)

equation (15) reduces to an explicit transformation for relating o. to V. The n
3 3*

soliton solutions correspond to V.(x,o) = constant. b) The generic behavior of N,N',

ao as X-).o is given by N-2N/(cznx) No-2i/tnx where c = 7=u(x,t)dx(c~o).

c) It may be established that 7 uMdx is constant in time which then yields the conserved

quantities of the BO equation. d) The implementation of IST allows explicit represen-

tations of V(x,t,x), B(t,x,z) in terms of initial data.

Finally we remark that the direct linearizing transform method applies to other

important nonlinear evolution equations as well, including multidimensional problems.

We shall discuss this in future communications.
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Abstract

The initial value problem associated with the Benjamin-Ono equation is

linearized by a suitable extension of the Inverse Scattering Transform. Essential

Is the formulation and solution of an associated nonlocal Riemann-Hilbert problem.

in term of initial scattering data. Solitons are given a definitive spectral characteri-

zation. Pure soliton solutions are obtained by solving a linear algebraic system

whose coefficients depend linearly on xt.

bi
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1. Introduction

The Benjamin-Ono equation arises in the context of long internal gravity

waves in a stratified fluid (1] as well as in a variety of other physical circumstances,

e.g. long waves in a stratified shear flow [2]. Mathematically speaking, its main

Importance, in our opinion, is due to the fact that it provides a conceptual bridge

between the inverse scattering transfora(IST) in one and multidimensions. This

startling aspect of the 80 equation will be brought out in the subsequent discussion.

The 0 equation can be taken in the form

+ 2uu + Huxx = 0; Hv(x)*ij.'ldx (1)

-W

where Hv denotes the Hilbert transform of v and Cauchy principal value integrals

are assumed if needed. It has been established that it possesses: n soliton solutions

(3], (4]; Bicklund transformations and a novel "Lax pair" [5), [6); infinitely many

commuting symmetries and constants of motion in involution [6], [7]. Recently (8]

the initial value problem associated with (1) has been linearized via what we refer

to as the direct linearizing transform. This paper is a sequel to [8], though it

( 'n be read independently. Specifically in (8] u(x,t) is obtained via a Fredholm

integral equation whose forcing and kernel are uniquely determitned through a certain

scattering function v(x,t,x) (x is the spectral parameter of the associated linear

scattering equation, see (2)). However, the determination of v(x,t,x) from initial

data u(x,O) requires solving a Volterra integral equation as well as a linear partial

differential equation. The above complication arises from the fact that previously

we did not have enough analytic information about the Jost etgenfunctions of

the associated linear eigenvalue equation in order to implement the 1ST.

In this paper we present an IST scheme for solving the BO equation with

u(x,O) - u0 (x)-*O sufficiently rapidly as jx1-.. We reduce (1) to a linear integral

equation depending only on initial scattering data.
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We note that this IST approach has two important features:

1) Not all the underlying Jost eigenfunctions may be extended off the line Re x.

Relating such etgenfunctions to those with analytic properties off the line Re X

is one of the main difficulties encountered in this IST scheme. ii) The underlying

Jost eigenfunctions are characterized through Fredholm integral equations (as

opposed to the standard treatment of the Korteweg-deVries equation, for example,

where the corresponding elgenfunctions satisfy Volterra integral equations). These

integral equations can have homogeneous solutions for certain values of x, say

X36 J-l,2,...n, and they give rise to solitons. Apparently both of the above features

are generic to multidimensional problems [9].

The advantage of the IST approach presented here over the direct linearizing

transform (DLT) method presented in (8], is that the IST essentially provides a

closed fom solution of the above mentioned scattering function v(x,tx) explicitly

in terms of initial data (see (28)1 The precise relationship between 1ST and DLT as well

various details of this IST scheme will be presented in the future.

2..The Direct and Inverse Scattering Problems

The "Lax pair" for the BO equation can be taken in the form

it+ + x(- ")  -u4, (2)

1 t 2 )x + t- 2tcu , v t (3)4t - exx

where x is a constant and is interpreted as a spectral parameter, " is an arbitrary

*7-7
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constant and [u]+, [u]" are the boundary values of functions analytic in the upper,

lower half z-planes respectively (z is the complex extension of x).

We remind the reader that any function u(x) defined on a closed contour

L (assumed integrable and, say, HOlder on L [lO])can be uniquely decomposed

into the form u - [u]+-[u] ", where [u]+ and [u]- are analytic inside and outside

the contour L respectively. The problem of finding Cu)* (assuming that (uJ'(z)O

as z-) is the simplest possible case of the so called Riemann-Hilbert problem [11].

In the case that L is the real axis the unique solution of this problem is given by

equations (4).

2.1 "Left" and "Right" elgenfunctions and the scattering equation

We now analyze the linear eigenvalue problem associated with the 80

equation, namely equation (2). Equation (2) should be interpreted as a differential

Riemann-Hilbert problem for the functions (z,t,x) which are analytic in the upper (+)

and lower (-) half z-planes. Equation (2) describes the jump condition across the

real axis x; it yields unique solutions for s± provided one imposes some boundary

conditions as z.-,.say in the upper half-plane. Here we assume that either f+(Zt,X)4,

or 1, as z.-,, Im(z)>O. The solution of such Riemann-Hilbert problems is usually given

in terms of Fredholm integral equations [11). This is also the case here. For arbitrary

u(u4O , appropriately a jxI - ) the solution of (2) with the above boundary conditions

exists if A is positive and real. It may be directly formulated via a Fredholm integral

equation of the second type. This Fredholm equation can have homogeneous solutions for

X - A where x are real and negative (we assume here that there exist only a finite

number of xj and that they are simple).

Specifically, we need only consider the (+) functions We let M,R denote "left"

elgenfunctions while N,N denote itght"ones. They are specified by the following

asymptotic behavior,



M1l, R4e1 x as x.--; -, 0 Ne i~x as x-.-. (5)

(Note that as IxI-o equation (2) yields is
+ + x+-x. Hence t+ + xo+-a, or 0+-a/;k + sei x

where nB are arbitrary constants). The elgenfunctions MRR,N satisfy the following

Fredholm integral equations:

(m(x~t,x)1  M(y,t,xk)

R(x,t,x)/ eiX + G+(x,y,.)u(y,t) A(yt,"X) dy, (6)

I (x,t,x)\ ( IR(Y~t,X)\
N(xIt,) - + J G.(x,y,x)u(y,t) 1 dy, (7)

where G+, G are the (+) and (-) parts of the sectionally holomorphic function

1 1 el (x-Y)p

G(x,y,) = T px-y- p (8)

where C denotes the complex extension of x, i.e.

I Mie(X-y)p

G+(x,y,) 1rn - p id r>0. (9)
£ 0 7 o

Equations (6), (7) can also be obtained from the corresponding equations associated

with the intermediate long wave equation [12] in the appropriate limit. We note that

in G+, the (+), (-) are now defined with respect to the semi-real axis of the complex

c-plane. We distinguish this from #± (here the (+), (-) are defined with respect

to the real axis of the complex z-plane) by now using subscripts as opposed to the

superscripts used before.

I .__ _
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Let us indicate how the equation satisfied, say, by N can be derived:

By splitting (2) into its (+) and (-) part and by using that N-e i xx as :-; it

follows that

Nx - IlN = ituN] , (10)

or

(Ne~1Axdx * f*X T f~L dp eiXPAic Yu(y)N(yx)) (11)= f -a y-(x+i¢) 2 -

-re we have used 1/(y-x-ic) - i7exp[-i(y-x-ic)pldp and the fact that (Ne -X)x0
0 x

as x.-. Integrating (11) one finds

•N(x,A) a eixx +J( p1(X-Y)p u(y)N(yx)dy,

-a 0

i.e. equation (7b)(where we have suppressed the time dependence).

Let * denote the discrete (+) eigenfunctions, then

I -a0 j(x~t) - Glxy,.xuMyMt) (y~t)dy; x <0. (12)

Recall that the Plemelj's formulae [10] for the sectionally holonorphic function

G(xy,c) imply that

G+(x,y,X) - G (x,y,X) = ie(X)ei(x y), e() 0 >O, (13)- ' , XL<O. (3

__________________

-1 - -
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In partlcualr for the discrete eigenfunctions G+ = G_ G(x,y,xj).

By manipulating equations (6a) and (7) one may establish the following

"scattering equation"

N - N + O(X,t)e(A)N; O(X,t) - i U(yt)M(y,t,X)e'iXYdy (14)
-m

(for the derivation of (14) see [13)). The solution of the "inverse problem"

consists essentially of solving equation (14). In this respect knowledge of the

analytic properties of M,R,N is indispensable.

2.2 Analytic Properties of the Elgenfunctions

The kernel of equation (6a) is a (+) function with respect to A and

the forcing of (6a) is 1. Hence the results of Fredholm theory imply that M is a

(+) function in the - plane, except for possible poles. These poles correspond to

-homogeneous solutions of equation (6.a). Hence

() (x~~x) 1 cj(t)4j (x,t)

M(xtx) + T + M+(Xtx) (15)

where M+(x,t,A) is a (+) function in X and +4 as A.-. Similarly

, n M$ ~e(x,t)

R(x,t,x) " I + E - + N_(xt,) (16)- 1 A-A Ct)"

where R(x,tx) is a (-) function in X and 9I40 as A-,-. It is clear that because

of the exp(itx),R, N can not be analytically continued off the line Re x.

7-

_ _ _ -'--
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2.3 A relationship between N and R

The representations (15), (16), together with knowledge of 8(x,t) are

still inadequate in order to solve equation (14). To view (14) as a Riemann-

Hilbert type problem one needs some further relationship between N and R. This
~is as follows

2a1N(x,t,)e x) = f(x,t)e 'Xfl(xt,x); f(x,t)& - I u( ,t)N(y,t,x)dy (17)

To derive this result differentiate equation (9) with respect to

x and then integrate by parts with respect to p to obtain

-(xy) I + i(x-y)G+(x,y,A). (18)

Also equation (7b) implies that

(NeiXx)A = J(Ge ix(x-Y))X u(y)N(yX)e"'Yy + Ge' x-Y)u(y)(N(yA)e'ixY) dy.

Hence, using (18) it follows that

(Ne ) e- eixXf(A) + J G-e ix(x-Y)u(y)(Ne'tY)xdy,

where f(x) Is defined by (17) (and we have again supressed the time dependence).

Comparing the above equation with equation (7a) (multiplied by exp(-ixx))equation (17)

follows.
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It turns out that o. can also be related to 9:

Cj (t)-tj~x'y) (g
(x4 j(t)¢j(xuy) U - x,y, 1 x); R yx,Yx)*R(K.,Y,X) - x (19)

Furthermore,

ci(t) - 3j(t) -I, j = 1,2. n, (20)

where b. have been normalized by xO4.l as x--.

The above results can be proven as follows. 
Equation (7b), analytically

continued for x<O, implies

((x,X) G(xyX)U(Y) '1A)dy jx)- G(x,y,x)u(Y-4 (yldy].

Hence, letting X.)X and using (18) (with s-O and x<O) it follows 
that

R(X.,X) - J~ ~~juy)~ ~jd - ic 1 J ,(y)u(y)(X-Y)G(X,Y,xj )dy + ail(2l)

-m -0

where aj a - cj7sc(y)u(y)dyl(2ixj) The asymptotics of equation (21) as x-

implies (assuming xojl as x-o-) that
0

A J u(y,t)oj(y,t)dy. (22)

77 7 -
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Then if cj a -i, it follows that aj 0 0 and a particular solution of (21) is givencIJ)
by N - x#. Hence, Fredholm's alternative theorem implies equation (19).

2.4 Scattering Data and their evolution

The scattering data necessary to carry out the IST associated with

equation (2) is given by A (t), yj(t) B(x,t.), and fik,t). Equations (3)+ , (15),

(19), (12), (17) imply that

(xi a constant, Yj(t) - 2Yjt + Yj(O)$:lA(Xt ) - O(X,o)e iA t , f(.X,t) = f(.X,o)e -i0 2t

I (2i)

We conclude this seccion by stating some important generic asymptotic

relations:

M-N-.2w as X-,0; B(x,t)---- as -4O, (24)c ZnX n

where c7 u(y,t)dy. The above formulae are valid for u real and cO.
-m

Th qpecial case c .0 is nongeneric and will not be considered here. Also

R-140 + as x (25)

3. The Solution of the Inverse problem

The solution of the inverse problem associated with (2) is characterized

by the following linear Fredholm equations:

1 n
Xgtk) - w(x,t,A,1)0(1,t)N(x,t,t.)dj. + E# (x,t)w(xt,.xx.) - v(x,t,X) (26)

N~~tA -~~xtA.)~Lt)~~ttot l
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.x 10 (L,t)N(xt (t) A -(x+yj(t))tj(x.t) - o A'T + io.a r ,' I, (27)
0 Iulj

where

v(x,t,x) J(f(tt)eix(A-L) + fs(I)elXx)dL;fs(x)= 1 (28a)

x tn

0

w(x,t,AA) = e (A-L)xJv( ; e4'Xj)rd¢ + ei(")+ )s f(Lt)e (x) )d '

0 xSi. 
-j

(28c)

By manipulation equations (26), (27) can be written in the concise form

) (x,t,A) + Ii ,(x,t,t) lx,t,X,i)dp(t)

-m

where *=N for X>O, *no for X=x1 , dp(i) - -C((i6(L-x + (1/2ni)O(zt)]dz and

is appropriately chosen. Hence the connection with equation (15) of [8] is readily

established.

Note that equations (26), (27) define N(x,t,x), 0 (x,t) in terms of xj, 'yi(t),

9A,t) and f( ,t). Hence, because of (23) N(x,t,x) o i(x,t) are defined in terms of u(x,O).

Having obtained N(x,t,x) and o i(x,t), [u]+(x,t) is determined by

ix 2 lt~ ~ xt (n

(u]* - lx,O)e1  tN(x,t,x)dx + ijoj(xt) (29)
I.I
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Finally, assuming u is real u [u] + (Eu) *

Before sketching the proof of the above results let us make some remarks:

1) f(Xt)--fs(x) as xo (using (17) and (24)). Hence f(x,t) is not integrable

near x-0. However, the singularities in the integrand of equation (28a)

cancel and hence v(x,tx) is well defined as x-O. ii) The solitons correspond

to s(X,O) w 0 and hence can be obtained via the system of linear algebraic equations

(77). iii) If 0j 0 0, jal,...n equation (26) can be formally reduced to a

Gelfand-Levitan-Marchenko equation: Multiplying equation (26) by 8(X,t)exi(x'-x)xy2W

and integrating over dx it easily follows that

K(x,x';t) + JK(x.;t) F(cx';t)dE = F(x,x6 ;t),x'<x (30)

where
F(x,x';tl+* j (X,O)e t( Xv(x,t,x)dx,

0

K(x-x';t), YL j(XO)e'(x
' x )x+ Ix2t N(x,t,,x)dx. (31)

0

Also (29) yields Eu] +  -iK(x,x;t)

Let us now derive equations(26) through (29). Substituting (15), (16) (with

cj " u -i) in (14) and then considering the (-) part of (14) it follows that

ft xt d ,t)Nlx t.+)d nft(xt)

r AL& .L. ) + 1 ' "l (32)

Equation (29) follows from the asymptotics of (32) as x-o and from equation (25).

j To obtain equation (26) use equation (32), equation (32) at x 0 0, equation (17) and

-il q
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the formulae

Ix xxetX(L- ) = t ei (L'A)d{ etX(AfA") ) - 4I et (xJ'x)d + eci(A -A)

1.-(A-lc) J, A -A J Aj-A

To obtain equation (27), analytically continue (32) for x<O, take its limit as

X-x - and use (19).
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1. Introduction

It is well known in the theory of solitons (see for example Ablowitz and

Segur [1]) that multi-soliton solutions of certain nonlinear evolution equations can

be obtained by more than one method. Some examples are: the inverse scattering

transform (IST) ([2], (3), [411 Backlund transformation (BT) E5); and the so-called

bilinear theory (6]. The IST scheme gives a method of solving the initial-value problem

for a broad class of nonlinear evolution equations [4]. Nevertheless if we are aiven a

particular evolution equation it can be difficult to set up an appropriate IST. On

the other hand, if we can establish a BT associated with a given evolution equation then

by suitable transformations the BT usually may be reduced to the IST. In this note

we shall introduce a BT, an IST, and a method for finding the conservation laws for the

so-called Modified Intermediate Long Wave (MILW) equation. In the literature the MILW

equation is related to the Intermediate Long Wave (ILW) equation ([7],[8]) in the

analogous way that the MKdV is to the KdV.

The ILW equation describes long internal gravity waves in a stratified fluid

with finite depth. It is written in a simplified form as

ut + 2uux + Tuxx = (1.1)

where

T(ux) = Tu x ) + u (1.2)

and

T(u) T - coth 2- u(&)d&, (1.3)

(f denotes the Cauchy principal value integral) and a is a parameter representing

the distance between the boundary and the internal wave layer. In the shallow water

limit, 60, equation (1.1) reduces to-the Korteweg-deVries (KdV) equation,
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ut + 2uu x + U =0, (1.4)

and in the deep water limit, a-, reduces to the Benjamin-Ono (BO) equation,

ut + 2uux + (u xx) =0, (1.5)

where H denotes the Hilbert transform operator

(u) 1 = dx' • (1.6)
u= J-x'-x

(1.1) (finite 6) and (1.5) have recently been solved by IST ([9],[10]). The

scattering problem and hence solutions by IST is open for the MILW equation, see (2.4)

below.

2. The Derivation of the MILW Equation

- Introducing w= fxudx, equation (1.1) may be written as

Wt + (Wx)2 + T(w)xx 0. (2.1)

The BT of equation (1.1) is expressed as [8]

(W'+W)x - x+T(&°-w)x - i6 ('-w) + ,ei(w - ), (2.2a)

(W") (t " + )(('+W) xx

-1 (ww)x T(w,-w)x + it "(W-W)(W'-W)x, (2.2b)'V

, ---- -- ,---.,--*---- ~'.

=1 1 m i
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where A and u are arbitrary parameters. (See Appendix B for the BT in bilinear form

for the ILW equation.) We note that if w satisfies equation (2.1), w' defined by

equation (2.2) also satisfies equation (2.1). Substituting equation (2.2a) into

(2. 2b) and introducing V=w-w', we have (8]

Vt + T(Vxx) + AV + Vx Cue V+i(T(V)-V)] = 0. (2.3)

3t 1 1

By setting V-*-iV, t. t, A = - T and u = , the above equation (2.3) takesthe following

form

3 Vt + T(V xx) + V (JeV+f(Vx)) 0. (2.4)

We refer to equation (2.4) as the MILW equation, which in the limit, 6-0, using the

expansion,

t(Vx"- + 6 V6 + x 6 + 0(05), (2.5a)

X 6W~ xx Wxxx

and

V =2u - 1 3, +005(2.5b)

yields the Modified Korteweg-deVries (MKdV) equation,

+6u2u x + ux . (2.6)
ut - _ _
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3. The BT of the MILW Equation

Introducing the following dependent variable transformation

V = log f- (3.1)f-g+ '

equation (2.4) can be expressed in bilinear form as

(.Dt+Dx)f .g: = 0, (3.2a)
3tX

2160xf'.g + =-f'g + f+g', (3.2b)

where we have used the abbreviations

f±(x) = f(x±i6), (3.3)

and introduced bilinear differential operators defined by [6,11] as

DnDa.b * (3_ - a_ )n(j _ a )m a(xt)b(xt') = = t' (3.4)
tx at at ax ax X X t

(See appendix A for some properties of these operators).

An (exact) N-soliton solution of equation (3.2) has been obtained by A. Nakamura [12].

In the limit, 840, these soliton solutions tend to the soliton solutions of the

MKdV equation (2.6).

- Ma
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As discussed above the MKdV equation plays the same role with respect to

the MILW equation as does the KdV equation with respect to the ILW equation [9].

(See Figure 1 below).

[] j .. A Miura Transform >

A Miura Transform

Figure 1. Describes the relations of the ILW, KdV, MILW and
MKdV equations.

By analogy to the KdV-MKdV case ([13-15],[17]) we have found the following BT of

equation (2.4) in bilinear form:

[EVDti(- c)D, + Dx - 4 I (3.5a)

i 1 2 1 4_2] +±

[ Ot+i c)D + Dx - 1k ± O, (3.5b)

(21Dx+c)f-.f a f+.f , (3.5c)

(21Dx+c)'.g = g .g (3.5d)

where

c = k cot kS, (3.5e)

and

- k cosec k6. (3.5f)

Equation (3.5) relates a solution (f,g) of (3.2) with another solution (f ,g ) of (3.2)
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(for more details see [16]).

It can be shown that the limit, 640, of the bilinear form of the MILW equation

(which is given in equation (3.2))tends to the bilinear form of the MKdV equation

(2.6) which is

3 * (~a

(Dt+Dx)f.f = 0, (3,6a)
t x

D 2f.f = 0, (3.6b)
x

where u = i(log f*/f)x,

and the limit of the bilinear BT (3.5) reduces to the bilinear BT of the MKdV

equation (see [17]):

3 2 3
(Dt+ik D +D )f.f = 0 (3.7a)

(Dk 2D +0)f -f 0 1 (3.7b)

() ~2 1~f =k2f~

D x f4 = f4 (3.7c)

D ff • f f (3.7d)

(where * implies a complex conjugate). Using the following relations (see [8)):

(log f)x (i±l)((iT+l)V e (3.8)

(log g±)x = 4(ii±){(iil)Vx+(eVl)
} , (3.9)

__6



the bilinear BT (3.5) transforms to the BT in physical variables:

6(VV)t + 1~ - c)(V-V )x + (V+V )xx

- ~1lV V,

7l\V-V JX{T(V-V )x + -(e -e )

2 -~V )xT{T(V-V )x + T~(e -e )}=0,(3la

I r[Iyy ) + 1 x (eV-e' )dxlt -(s c)[T(V-V )x + -(e -e )

+ it( V+V )x + -,(e +eV

-e -(eV-eV

+ i.(V-V. )i(V-V ) = 0, (3.10b)

-i(v-V,) - i(V+v )X

2p exp jf(T(V-V) + lfxeVV )d sinh 7( ), (3.10c)

iT[T(Y-V )x + -je -e ))+ T(V+V ) + i(e +e -2)

Sx V V lI,~(3-10d)
--2c+2i exp j(T(V-V )+ tf (e -e )dx] Cosh -(-

We note that either set of equations (3.l0a,c) or (3.10 bd) are adequate to represent

the BT of the MI1LW equation.
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4. The Conserved Quantities of the MILW Equation

One may derive the conserved quantities from the BT (see for example [7],

(18]). Introduce W V-V , and rewrite equation (3.10) as

1
6Wt + i(-E - c)Wx + (2V-W) - f-(Wx>)-I- t .T(I 0 (4.1a)

(Ic itI 2(V)2 V
3 t I x x. x)  x

- xT(Ix) + -iT(Wx) 0, (4.1b)

- T(w x ) + i(W-2V) x - 2P(exPI)sinh!W, (4.lc)

- i1 ]+ +(2-41) i(e +eVW)= -2c +2u(ex jI) cosh~W,

where

i(w) + tLe (-eW)dx. (4.2)

Imposing the boundary conditions V(±.) = 0 and using

':ui(v) + vi(u)]dx = 0, (4.3)

we have from equation (4.la) that

Ef*_Wdx]t = O, (4.4)

and from equation (4.lb) that

[/m Idx] t - , (4.5)
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which means that fY Wdx and f. Idx are conserved quantities.

Following Miura [19], for -*. If we expand

W e n nn  (4.6)

n=l

where

C = <I , (4.7)

and equating the same power of c in equation (4.1c), we obtain

W I  -4iv x ,  (4.8a)

= 8imT-i)V + V T(V ) + 1-x(eV-l)], (4.8b)

W 2(i)W {13(W2 ) + i xe V(W 1 2
3 -2x - --ewI  - wI  _e (w2 )dx,

" (T(W1 ) + 1 VWdX)} . w2{T(W1 ) + i e'Wdx}.. (4.8c)

Unfortunately the integrals f' Wldx, f'.W 2dx, .1W 3dx, etc. are trivial conserved

quantities. But from the expansion of I:

(W) + tre (-eW)dx n 1 (4.9)



we obtain the following (using (4.6))

= -4i(T(Vx) + tie Vxdx]

12 8ifiti)Vxx + VXT(Vx) + Vx(eV-1)

+ I eV[l {(-i)Vxx + Vx(V) + lVx(eVl) }

+ 8VZ]dx, 
(4.10)

from which are deduced the following 
conserved quantities

1 ) 1(eV l ) 
(4.11a)

2) T(Vx xv ) + e 1e2 (4.l1b)
X X X 26

These may be verified directly.

In the limit as s4O, equations (4.11a), and 
(4.11b) using (2.5) give 

the

,irst and the second conserved quantities 
of the MKdV equation (at the lowest 

non-

trivial order of 6), which are 
u, and u2 respectively [201.

- -.. L.
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5. The IST Problem for the MILW Equation

In a manner analogous to Wadati [20] and Satsuma et al [7] we obtain the

IST problem of equation (2.4) from the BT given in equation (4.1). By using the following

dependent variable transformation

(log lx (log T )x =  (iT±l){Wx+itx} (5.1a)

and

(log (log -- 1 -Wxix, (5.lb)(log g2x

(see Appendix C for useful relations which can be derived from the above equation.),

and by substituting (5.1) and Appendix C relations into equation (4.1), adding and

suostracting the resulting equations yield

-2i* + + Cc-iVx+T(Vx) + I(eV-I)]* = w , (5.2a)

+ 1 V-2 + [c+iV +T(Vx ) + =1)14 Z (5.2b)

1 1. 2i+
t " i( - c)*±x + [('iT+1T{V + V 2xx)) (eV -.' k ]*- +"*- = 0,xx (5.2c)I t lx e xx xx 4 x x

I I ± 1 2 - 1± + =0. (5.2d)* ±'t -i-. c).z± + (. (ii±l)(-V +ir(v 1+-Le W I2 X

We expect that have the following analytical meaning: represent the

boundary values of functions (i.e. W(x) = lim i±(z)) analytic in the horizontal strips
Im ZO

between Im z - 0 and Im z - 26, and periodically extended thereafter.

* -7
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By defining

*1= (vl-iv2) (5.3a)

2 +iv (5.3b)

and substituting into the above equation (5.2) we get the following set of equations

(by adding and substracting)

+i -

Vlx +"TVl++ Uv+ . -uv 1 = O, (5.4a)

+ .. + + i- (5.4b)V2x Uv1 + WV2 - -'2 = 0,

4vt + i(T- c)Vx - ix A v+ - B-v+ = 0, (5.4c)

it lx+ 1 2+

1 +i! )± V± +8 v - Av=0 (5.4d)

32t a 2 c 2  x 1 2

where

U - Vx ,  (5.5)

-LV(Vx) + T(ev.)+C), (5.6)

±i liV 1 2A- (T±l)( T(Vx) + T(e v-1)x -t (5.7)

B± - (iT ±i)Vxx. (5.8)

c * k cot k6, (5.9)

ii I m
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- k cosec k6. (5.10)

It is readily shown by a cross differentiation that equations (5.4a-5.4d) constitute an

IST problem associated with equation (2.4). Assuming V = 0(6), expanding v (i=l,2) in

terms of 6 and substituting them into equation (5.4), we obtain at the lowest nontrivial

order of a,

Vlxx + (u2- 12 + v2ux = 0 ,(5.1a)
1 )v(5.11 )

V2xx + (u -k)v 2  l x = 0 ,

Vit+ 2V2xUx- v2uxx - v1(u 2)x + vIx{k 2+2u 2 = 0 ,(5-1c)

v2t -
2vVIU.x+ VIUxx -v2 (u 2 X  + v2x(k+2u 2 =0, (5.lld)

-,hich is one of the known IST problems associated with the MKdV equation (2.6). It isIJ
to be noted that equation (2.4) is a necessary compatibility condition for equations

(5. 2a) and (5.2c). (See Appendix D for still another form of IST problem for the

MILW equation).
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Appendix A: Properties of the D operator

We have

0 n0 a-b p - ) (. - - m a(t,x) b(t',x)It.txx
t x at at ax ax

The following properties are easily seen from the definition.

(1) Dma.l - ('x)ma,x a

(2) Oma.b = (-1)mDmb.a,x x

(3) Dma.a = 0 for odd m,

(4) Dma.b Dm-1 (ax.b- a b

(5) Dma.a = 2D 1 ax-a for even m,

(6) Dx0ta.a = 20xat*a

a 2D ax.a,

(7) Dmexp(klx).exp(k x) = (kl-kA)mexp(k+k 2)x,

Let * - log(a/b) and p = log ab, we have

(8) (Dxa.b)/ab =

(9) (D xa.b)/ab a P xx+ 2

(10) (Dxa.b)/ab " xxx +, 3# x + (x)3,
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Appendix B: On the ILW Equation

The ILW equation is given by

ut + 2uu x + T(u xx) = 0. (B.1)

Introducing the following dependent variable transform

u = i(log f'/f+ )x (B.2)

equation (B.l) can be expressed in bilinear form as

(i.t +fD x + D=0)f+f 0. (B.3)

(See Appendix A for some properties of these operators). The BT of equation (B.3)

in the bilinear form is given by £8]

2 1 k2f tgt

(iDt + i(I + X)D + D )f = O, (B.3a)

(21Dx-x)f'.g + =V f+g', (B.3b)

where

x a -k cot k6, (B.3c)

v k cosec k6. (B.3d)

.•-m-llm
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Appendix C: Useful Relations Derived from Equation (5.1)

(1) (log Wx+ilx

(, (log - x )

*1

(5) (log + )x Wx

12

2 ~' 2-~
(6) (log - -)x 1 )x

*1



Appendix 0: Another IST Problem for the MILW Equation

In this appendix we will give an alternaive IST problem for the MILW equation

(2.4). It is to be noted that we need only equations for one of the 'j say l to

obtain this.

Define

.(t±i)V + x (eV-l)dx. (d.l)

Rewrite equations (5.1a) and (5.1b) as

+

(log l -- (Ti)(Q1-Q-), (d.2a)

(log 02 ) = - (i~)(Q '+-Q+) ,(d.2b)

resepctively. For convenience, we denote *1 by El and *2 by C2 Equations

(5.2a) and (5.2c) can be rewritten as

-2 o - +

_ lx + (Q-+C){1  = .Ucl& '  (d.3a)

i + 11 iQ 4 - 2, + - + =0, (.b

i(- c)&lx 2 xx "4: lxx (d.3b)
lt

respectively, and from the analytical property note that

( ) 2 (d.4)
kr

A-
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In analogy to the MKdV case if we take equations (d.3) together with their complex

conjugates this will yield the IST problem of the MILW equation. Indeed, the following

set of equations for 4, and &, which are

-2i x+ (Qx+C) - = " (d.5a)

2 + (Q ++C)4-+ (d.5b)
2'& x C

2i +2 + 1 12-'(.b

+i*.-C.)I1 + {.-(T+i)Qxx + k Jcl 1x 0, (d.5c)
± ± ±

- 1x x i- + I +.2

1~2t -T c)t2x + (r±i)Qxx 47' )2 2xx 0.(d.5d)I

yields an alternative IST problem for equation (2.4). By defining

-I l (l+ii)A,

I+ -(I-iT)A,

&2 (d.6)

II
2i

1+ . .. .. .. I...



equations (d.5a)-(d.5d) give the following set of equations (by adding and subtracting)

21 Ax -W(iTA) + iVxA = -ipT. , (d.7a)

-2TAx - 1.A + iVxTA = , (d.7b)

1 ~1

SAt + i(T - c)AX - U .A - G (iTA) - iTA = 0, (d.7c)

" 6 TAt (- cjTA - U (iTA) - G+.A - Axx = 0, (d.7d)

11 .C ¢ " G (T ) "

Ts t - i(I - .0 + - Gi )- i0, = (d.7e)
x xx

1I" Tt (T- C)T - u'(iT,) + G-. + = , (d.7f)

where

1= c - i[iT(Vx) + T(eV-l)] , (d.8a)

U Vx -2fiTx+-E(e -1]I (d.8b)

IV1 1
G " T[iT(Vxx) +..(eV x-xx 4 (d.8c)
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ON ANALYTICAL AND NUMERICAL ASPECTS OF CERTAIN NONLINEAR

EVOLUTION EQUATIONS, PART I: ANALYTICAL

ABSTRACT

Nonlinear partial difference equations are obtained which have as

limiting forms the nonlinear Schrddinger, Korteweg-deVries and Modified

Korteweg-deVries equations. These difference equations have a number

of special properties. They are constructed by methods related to the

inverse scattering transform. They can be used as a basis for numerical

schemes to the associated nonlinear evolution equations. Experiments have

shown that they compare very favorably with other known numerical methods

(Parts II, III). In part II of this paper, the Ablowitz-Ladik scheme for

the nonlinear Schrddinger equation is compared to other known numerical

schemes, and generally proved to be faster than all utilized finite difference

schemes but somewhat slower than the finite Fourier (pseudospectral) methods.

In part III, a proposed scheme for the Korteweg-deVries equation proved

to be faster than both the finite difference and finite Fourier methods

we considered.

1. INTRODUCTION

In recent years there has been rapid advancement in the study of

physically interesting nonlinear problems. The progress in this field

has, in part, been due to the synergetic approach [1], which consists of

the simultaneous use of conventional analysis and numericsl experiments

to investigate nonlinear phenomena. In this paper we will derive a numerical

scheme for the Korteweg-deVries (KdV) equation and the Modified
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Korteweg-deVries (MKdV) equation based on the inverse scattering transform

(IST). In parts II, III of this work, we show that the schemes compare

favorably with other known methods. Before proceeding, it may be helpful

to review some of the recent developments in this area.

The inverse scattering transform (see for example a recent reference

on this subject by Ablowitz and Segur [3]) was first discovered by Gardner,

Greene, Kruskal, and Miura [4,5] in their study of the KdV equation.

Subsequently, Lax [6] put the ideas in an alternative form which allows

the method to be readily generalized. Zakharov and Shabat [7] found a

new eigenvalue problem which led them to the solution of the nonlinear

Schrddinger (NLS) equation. Ablowitz, Kaup, Newell and Segur [81 showed

that a generalization of the Zakharov-Shabat eigenvalue problem allows

one to find the solution to a class of interesting evolution equations

which, in addition to the above, includes the sine-Gordon, MKdV, self-

induced transparency equations, etc.

These ideas also apply to certain classes of nonlinear differential-

difference equations. Using discrete scattering procedures developed by

Case and Kac [9,10], Flaschka [11] was able to solve the Toda lattice

equations. Similar results were found by Manakov [12]. .Subsequently,

Ablowitz and Ladik [13] presented a discretized version of the generalized

Zakharov-Shabat eigenvalue problem which allowed them to isolate a class

of differential-difference equations solvable by inverse scattering.

Ablowitz and Ladik [14,15] further generalized this theory to cover

nonlinear partial-difference equations. They found a class of such

equations and further introduced an equation which can be used as a
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numerical scheme for the NLS equation. It has the following advantages

(16]: (see also the following section)

( i) This scheme maintains many of the important properties of the

original problem. One can associate with this scheme an infinite set of

conservation laws, just as in the case of the corresponding partial

difference equation. This scheme has traveling wave solutions, with special

properties, these are the solitons ([l],[4],[5]).

(ii) The associated linear scheme is always neutrally stable.

(iii) This scheme maintains a certain joint x,t symmetry of the

original equation.

(iv) The order of accuracy is the same for both the linear and

nonlinear schemes.

( v) This scheme depends globally on the mesh points, but it does

suggest others which are local.

These nice properties motivate us to look for a numerical scheme for

the MKdV and the KdV equations in an analogous way.

In the next section we will review the procedure of finding the partial-

difference equations together with the results for the NLS equation, which

has already been discussed by Ablowitz and Ladik (16]. We will then

develop and introduce a new scheme for the MKdV and the KdV equations

based on the above theory.

2. Nonlinear Partial Difference Equations.

The key step in obtaining partial difference equations which can be

solved by inverse scattering is to make an association between the non-

linear evolution equation and a linear eigenvalue (scattering) problem.

I.
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In this discussion all the difference equations are related to the eigen-

value problem [13]

an M
V in~l zV + ' +I In. -

inIi In + 0- 2n n 2n+1I (2.1)

Vm  I-m + RIV + TV2n+1 z 2n n in n ln+i

m mn in Tm

where z is the eigenvalue and the potentials R7, Qn, Sn, T are defined
n sn n

on the spacelike interval in[ < - and the timelike interval m > 0. The

various evolution equations are distinguished by the associated time (m)

dependence of the eigenfunctions

Aiai a in +
-1Y A,(z)V, + B (z)Vn

(2.2)

AM-vi - Cin(Z)Vhl + Din(ZWV a
2n U in n 2n

where &"vT -" - V7' (i-1,2). That is to say for each partial difference
in in deenin

equation there corresponds a set of functions A , B nC depending

in general on the potentials. The equations for determining the sets

., and hence the evolution equations are obtained by requiring

the eigenvalue z to be invariant with respect to m and by forcing the

consistency

a (1jU n ) -n in l) 1-1. 2 (2.3)

where is the shift operator in the spatial coordinate defined by

_ __ __ __
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E n in  Vin+m , i=1,2. Performing the operations indicated in (2.3) results

in four equations.

For the special case associated with the NLS equation we let

m - m* m m
Rn= + n M Tn =k 0, and the four equations are given by

n m+lim m M*
~nn-% c 3n- -i%'

1n in on Cn n B inl mm

1-B m zB, + A, Q,, mm+l m
z n+1 n n+l n n n Qn

(2.4)

S I m1 - m  M* mm+l m mm*
zC n+1 z Dn+ln Ann Q n

1 A Dm " Q im+l*Bm m m
z n n n n ncn+l

where A Am -A - Am etc.
n-n n+i n

This system can be solved in a deductive way. Using the ideas in (16],

expansions in powers of z and - are sought. The seriesz

- 1 (2k) 2k I (k) k
A E A z ,B E B' zkk--1 n n k--I n

kO0

(2.5)
1 1m  k- 5k) 2 k Dm - kk)1 D( 2 k) z2k

C n E Cn zDn =E Dn
k-1 k-1

k#O

k  (k) (k)
are substituted into (2.4) and the various powers of z(A n D"' n

are assumed independent of z) are set equal to zero. One can find each

of the unknowns A( 2 ) AM, D (-2 ) in terms of the potentials. The
t n n

-
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condition under which we can solve (2.4) requires that the potential evolve

according to the evolution equation

M M M(0) m+l (-)* (-2)* M.1 mM* M
A Q - - n A- A -A ) n %+l nn H A k)

kn-rn

+ A (2) Im n M4-l +l* M M* Ur)]
- [n+l + - Qn+lQn +Qn+l qn - ]

k=-

Qm4- • n-l

A (2)*[ m41 n 11*I* Qnm+r mlM M ],
- n-1 - 2 -- n-l"n Qn-l- -k=-

(2.6)
_M.lT1*. M m* --a m* em

where A. (.IQ. -j M)( QjQ ) and Sk " Qk+lQZ*QZQk-*)(

The A- # are arbitrary constants of summation (fixed at n-'- ) and

D (- t ) * - A(i), i-2,0,-2.

So by a suitable choice of the constants, one can obtain a partial

difference equation which is consistent with the NLS equation

2
iqt q xx 21q.1 q. (2.7)

In the linear limit if we want

.l m_4,.1 2.4-1 .+1 a -+,, %_1.1 + QI l 2% + Q-_,

At and
where a and - =q(nAx, mAt) Azq then the constants

(Ax) 2

-
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are chosen according to A (2 )  -i a AM° >  io, A (-2) ' This- i - - = 2 -. Ti

particular choice of constants in (2.6) leads to the following evolution

equation:

Mm
n 1 m m m + m+ + M+.
t = 2 (qn+l - 2qqn +  qn-1 pn-I p qn+1 n 2qn +n-i

,m m*qm + m+l* qm+l) +(i+ m qM* qm+l qm+l*
-4n n n+l n n+1 + n n-1n n-1 n

2q M* q m+ + q q P -qS - S*

qn n n + n n qn - nn n _1 (2.8),

where

Ak  * .= n . Ak
Pn k=-4 in km-,2

m* m M* Am (1 +q qq I (Ax) )/(1 + q (qx) .Ok k qk-1 + qk+l k ' k - k--k

This scheme is implicit and global. However, a local scheme is suggested

in which Pn-l and Sn-0 for all n. Equation (2.8), is consistent with the

NLS equation (2.7) with the truncation error of order 0((At) , (Ax) 2 )

Similarly the local scheme also has the same truncation error.

For the special case associated with the MKdV equation

Rt x 6RR x xx 0

we le R 0A +(C.9)

we let - ± + , Tm -S* = 0, and the four equations are given by- n n

K I _ _ _ _ _ _ '
- ~ -
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7.4 + 4RM'B + RmlCM 0o (2. 10)nn n n+1 n n

+ Lre + ze + +D - + A R + Bn n n n - n+l n + -- n+l (2.11)

2C - Cm IF R'~~- - -A
5  (2.12)u z n -n+l n n

m B-- (2.13)n rn na r nn+l

Using the ideas in (13,15,16], the coefficients in the equations for

the time dependence of the eigenfunctions are expanded as

2 2k (2k) -  2 (2k-1)B(2k-1)
A7 E z A ,B E Z B(2 nB~k--2 nk--

(2.14)
2 (2k-1)(2k-l) 

m  2 2kA(2k).
cm  -r z B "n k=In n k=2 n

With the expanded form of Am. Bm, Cn, Dm, equations (2.10), (2.11), (2.12),

and (2.13) yield a sequence of twenty equations in eighteen unknowns corre-

5 -5 4 -1sponding to equating powers of z5, z , z I z , all of which must

be independently satisfied. To solve these equations it is most convenient

to solve the resultant equations corresponding to -5 and z- 5 first, then

4 1solve the equations corresponding to z , -- , etc. Carrying out the algebra

we find the values of Ana D,..in terms of the potentials (see

Taha [2]). The remaining two equations are consistent under the following

conditions:

A" )  -i) 4,2,0,-2,-4. (2.15)

, ,
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The following evolution equation is

nMRM Rm A(4 ) Rm1 D(4 ) +Rm S
n n+2 - n+2Yn+1 _ n+1 n+1

-Rm+ip - [RM+1 A (4) R + Rm+ISn+1 n n-2 - n R-2yn-2 - n-1 n-2

- P.] + Rm() + tz R+{Rm+A (4)
n-ini n -- =t 1-2 -

R _2_D (4) +Rm+l R m }- 2yZ 2 _ + 1i 1-2 - R.IiPt1

-m (R A(4)_ Rm+l D(4) +Rm S R m+l
k Z+2 - Z+2 £.1 - £+1 £+1 -+ R J

R M+ VA (0) + nFR M+1 [Rm+ IA (4) _ R m D 4

_ - Z[ 2  - Z m 2 -

L-1 Z2 --1 2,1 111+2 +2 t+1 D

+ RR+S m4 1 j) (2.16),

where

() () ()n (2 1n ()14

Sn = A-2) + A 4- F + D 4-  J, P = (D(2_ + - [A( 4 )E +DG4)Gt ljI)y n,

n m m m

y I1 (6i  /6k), % - Ri

-i H . +±(RmRm16m+lRm Rm+1 6m-
. n - +1 -n n n

on yn/6+, F " +[R.R' 1- A( )1n .._n J+l .

- m+l 6~ m' m+l

Gn "+(R n Rnl-RnMRn3 )ynl1

EX ; T(RmRm+16 m+l-R m.R Mrl6 m) (2.17)
n n n-1 a n-i n n

_ _ _ _ _ _ _ -
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In the limit as m+l--m, equation (2.16), becomes

Rt A(4) 2(4)" + (A(2)D (2))(R -R
_t (Rn+2-n2)+ - Rn+l-Rn

±(A(4)_D(4)[R2 (R +Rn_2- R2  (R+Rn+2) R 2 -n-1 n - -+ n (n+2-Rn_2)

+ (A(2)_D(2)) R2 (R_I-R n )

+ (A (4)_D (4)) Rn [Rn+l R n(R n+l n n+1 +2+R n )I

RnRn- _(RnRni+Rnn+I+R2Rn-1)), (2.18)

Let R Ax U, and by a proper choice (see below) of the constants and taking

limit as Ax-.O in equation (2.18) yields the MKdV equation

U t 6U2U + U 0 (2.19)t x xxx

From equation (2.16), let us consider the linear part which can be

written as

*m+l um .iM -1. (0) U + v.+) (2)

n " tun-Uu )A n+l--n-l)"-

+ " -U"'.D( 2 ) + (2 " ufI* ("4 ) +
n .n -) - + "n+2-Un-2) - +

+ (1 . U m+l._D (4) (2.20)
n_2- n+2 -

t

I

, _ _ _ _ _ _ _,,,,.~
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To choose the constants, we require a scheme of order 0((At) 2,x)2)I

(expanding U n . .. in Taylor .', ~e:) t thji:; requirmenr W

find

(2) A 2 A +0  1 of D(-2)
A(_  3 - 2 = _

(2) 2 (0) 1 (-2)
3 - (2.21)

(4) 1(0) 1 = (-4)

(D 1 +(-4)
6 -

where

S=(tx) 3

and

A (0 ) = arbitrary constant.

2 2
In order to get a local scheme of order 0((At) (Ax)2) for the MKdV

equation from (2.16)*, let S
=  Ax U , keep the terms through order

0((X) 3) and then drop the sum terms of the form

n n a ; 2_ m1)2]
r. fu('u'-1 )  z. [(U U

and replace yn by 1. Equation (2'.16), gives the following local scheme

m+1 M m .M+l (4) m rn+l, (4)

n _ U = [(Un+2 -2 A - + (Un_2-un+2) -

+ (u m  -u=+I.)A(2) + ,Uin m+1 )D(2) + (u m -U m+j )A (o)3
'n+l n-1 - (n-l-Un+.1- + n- n -

IL __
- I.i
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" (Lx) 2FLUr[U inUin+UmU m - m- nM+l m+l+um+l UM+l-I

nX L n2 nl n+i n n n+f2  n+1 i-l

Um+U Un U En I - m +1 e+l+ m+l U ++-- U) [ U
n1[n-i n-2 n n-i n+1 n n+1 n+l n+2

+ [m Umm+lEn+Um E n + m++ l n I
Un+i nn+i n+iUn+ 2  + nIn+2 Un+l Un-1I

-m+I n'+I M m + lU  r -+l- M+l M M+l mn rn (4)
-U [u n n-2 +l n-1 - UUn r-i Un-2 +Un Un-ID-

+ [umum+'[Um n um+]A (2) +[(Un)2_ m+( ) m+l2U ID (2)
n n n-i n+l n+l n n-I- j

(2.22),

where A ... ,D
-  satisfy equation (2.21). Equation (2.22 ), is con-

sistent with the MKdV equation (2.19), with the truncation error of order

2 2
0((At) , (AX) ). This truncation error holds also for the full scheme

given in equation (2.16),. Since A (0 ) is an arbitrary constant, we have

a family of schemes, each one of which satisfies the properties discussed

earlier for the NLS equation scheme.

For the special case associated with the KdV equation

Ut + 6UUx +U xxx 0 (2.23)

we let Qn . R7 - 0, T' - 1. The four compatibility equations for Am
n n n n'

Dm are given by
n

A M Am S <m S m+l- s
n+l z _ +-z Bm - n n n
m rn-- in n-f- rn-f- in r-f-

1-S 1-S i-S z(i-S n (1-S)(1-S )

(2.24)

Sm  Bn Bn SM+l Dn  S -r l S m
nAm + n+ z n n n n n

in-, +1lS+ (i-sm~ ) Z(i-S m1)Ci-S)n n n n n

(2.25)
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Am  S M+l _Sm

z m + z Am (S -Sn),.

u-s w n + l 1-s M n+I - M+n z(1-s) +l  (1-S M+ )(-s)

(2.26)

S W Cm Dm zBm Sin-l-S m
i n n+1 n n n n

M) 2 _?_ - TI M+1 Mn n-n n -n n

(2.27)

Using the ideas in [13,15,16], the coefficients in the equations for

the time dependence of the eigenfunctions are expanded as

2 2 2k(2k)
Z z2A(2k),Bm= Z z B

n k--2 n n k=-2 n

(2.28)

2 2 ZkD(2k)
C E z C c. z2kC2 2 k)

k--2 n n k=-2 n

With the expanded form of Am, Bi, Cm, Dm, equations (2.24), (2.25),

(2.26), and (2.27) yield a sequence of twenty-four equations in twenty

5 3 -1 -3 -5
unknowns corresponding to equating powers of z , z , z, z , z , z

all of which must be independently satisfied. Twenty equations of which

give the values of the twenty unknowns (see Taha '2]). The remaining

four equations, two of them are trivially satisfied and the third is

satisfied under the following consistency conditions

A(i) D(- )  i - 4, 2, 0, -2, -4. (2.29)

The fourth equations gives the following evolution equation:

SSnm A( 0) n . M+1I ( (2)

11 - r [EX+I + S I W (A + C 2)1-s £,=W

-[DO(4)£ I (2 ) + (HR + Gk) S M+1y (Y.I w

- " -+ D- k k it 'X l -. nk:~c.
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n [D( + i f4 N -N + M

m+1 Sm 1 1+m~ Z1 9.+1l

1 E-

+ 1 it -j~ E~1 ~ +l +1 yITt -2 + (Y1tltiLn-1

n ns
+ -aE --lTn- (1S= l (- (2.3o)*

(2) (2)~+ n-2

E = A 2 SN ~sm+ 1D( + H + G - Sm n I(Hk + Gk)
nI - nfl-i nI - n n kI k

-' c n - p w 1r

T y -~ N M = S5 nr-i~ A ( 4 ) s - 4

n ~TI-I-iln~~n n~ n+19 TI ni nl n T

Z n (A-" + E Q W )W nN n- + -

Wnf y y 7ti
im-401-si

(4 S kSm)Wk, Gk - S=S~') 4

F k(A4 (S 'W -S 4 4  + D() Sm- ~

- A (4 )(SI-S m )W + D (4)(S "+1 -S M1ly )l
j - j J+1 j - j+1 j j'

Q (S r+-S )WJA( 4) -(Sa Yj-Sm.)D (4). (2.31)
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In the limit as m+l-m, equation (2.30)., becomes

(S -S )a+y[S -S2  -S S -S S .i s2 
*

n+l n-i n+2 n+l n+l" n+2 n xlt-l. n-i

+ 152 -+SSnt (2.32)+ n-1 n-2-Sn-2+Sn Sn-1) - 1-S
n

where

A (2)_D (2) . D(-2)_A(- 2 )

and

y A (4)_D (4) . D(-4)_A (-4 ) .

(Ax) 
2 U m

Let = - ( , and by a proper choice of the constants andn

taking limit as Ax-.O in equation (2.32) yields the KdV equation (2.23).

To determine the constants in equation (2.30), we apply the same

argument as in the MKdV equation case and it turns out that the constants

have the same values as given in (2.21).

In order to get a locol scheme of order 0((At) , (Ax) ) for the KdV

'equation from equation (2.30),, we follow a similar procedure to that of

the M4CdV equation. We can establish the following:

S + l- S M - (S'. MSIl). (o).-A(2) (S m mi+ )+D(2) ..- S _l.
n "" n - " n+l- n-I - n-1 n+1.

+ A(4)(S m  Sm+1 +D(4)_ m rm+l

- n+2- n-2" - (Sn-2-Sn+2)

(S)2_ f qRT0l ,2 (0) n(4) f mrl € m+ljm+l em+1
+[(S,)( ]AO+D(S S +S

n n "- -- n+l n n+i'n+2

A (4).m ( M m (4)_

- n-1 n n-1 n--.



-16-

with

(Ax) 2 U rn
m e n
S n 1-e

Equation (2.33)* is consistent with the KdV equation with truncation error

2 2
of order 0((At) , (Ax) ) as is the full scheme given in equation (2.30),.

As in the case of the MKdV e,..dtion, we have a family of schemes for

the KdV equation and each one of them satisfies the properties given for

the NLS equation scheme.

It is worth mentioning that the partial-difference equation for the

KdV equation also can be deduced from the discrete Schr6dinger equation

m m
anVn +V = XV (2.34)
n n+l n-1 n

with an assumed time dependence of the form

AmVm - xn.Vm + 'BV (2.35)n nn+1 nn

and expanding A, B in powers of X as follows

nn

m. -(3)X3 + -(1)
n -A n +AX,n a n

and (2.36)

,gm . ;L4B(4) + X2-i(2) + X(0),(0).

n n n n

3. Conclusions.

The partial difference equations which we discussed are consistent

with certain important partial differential equations (NLS, NKdV, KdV).
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It can be shown that the solutions to the difference equations converge

to the solutions of the corresponding partial differential equations. The

partial difference equation maintains the joint x,t symmetry of the original

partial differential equation. The partial difference equations suggest

local schemes which still maintain the joint x,t symmetry of the original

equation.
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ON ANALYTICAL AND NUMERICAL ASPECTS OF CERTAIN NONLINEAR EVOLUTION EQUATIONS,

PART II: NUMERICAL, NONLINEAR SCHERODINGER EQUATION

ABSTRACT

Various numerical methods were used in order to approximate the nonlinear

Schrtdinger equation, namely: (i) The classical explicit method, (ii) Hopscotch

method, (iii) Implicit-Explicit method, (iv) Crank-Nicolson implicit scheme,

(v) The Ablowitz-Ladik scheme, (vi) The split step Fourier method (F. Tappert)

(vii) Pseudospectral (Fourier) method (Fornberg and Whitham). Comparisons

between the Ablowitz-Ladik scheme, which was developed using notions of the

Inverse Scattering Transform, and the other utilized schemes are obtained.

1. Introduction.

The nonlinear Schrtdinger (NLS) equation describes a wide class of

physical phenomena (e.g. modulAtional instability of water waves, propagation

of heat pulses in anharmonic crystals, helical motion of a very thin vortex

filament, nonlinear modulation of collisionless plasma waves, self-trapping

of a light beam in a color-dispersive system 11]). The LS equation was

investigated numerically by Karpman and Krushkal (2], Yajima and Outi [31,

and Satsuma and Yajima [4], Tappert [5] and Hardin and Tappert [6]. In

the latter two works the NLS equation was integrated by the split-step

Fourier method. As discussed in part I Ablowitz and Ladik [7] found

nonlinear partial difference equations (based on the inverse scattering

transform) which can be used as a numerical scheme for the NLS equation.

This scheme has certain desirable properties [8] (see part I).

This work aims to compare the Ablowitz and Ladik scheme and other

known numerical methods for the NLS equation
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iqt qxx + 21q12 q (1.1)

Roughly speaking numerical methods for obtaining solutions to initial value

problems fall into two categories (9]: (1) finite difference methods and

(2) function approximation methods. For the finite difference methods we

seek approximations q. to the original function q(x,t) at a set of points

xn, t m on a rectangular grid in the xt plane, where xn - hn, ta - kin, h

is the increment in x, and k is the increment in t. By expanding function

values at grid points in a Taylor series, approximations to the differential

equation involving algebraic relations between grid point values can be

obtained. The function approximation method approximates the exact solution

q(x,t) by an approximate solution. defined on a finite dimensional subspace

n
q(x,t) m Z(Xt) - Ci(t)§i~x) (1.2)

i-l

The #i(x) are appropriately chosen basis functions. Common choices for

these are the trigonometric functions, leading to a finite Fourier transform

or pseudospectral method and piecewise polynomial functions with a local

basis, giving the Finite Element Method.

The following numerical methods were applied to the NLS equation:

l.- Finite difference methods.

a) Explicit methods.

i) The classical explicit method.

ii) The Hopscotch method [101.

b) Implicit methods.

i) Implicit for the linear part and explicit for the nonlinear

part (Implicit-Explicit).

ii) Crank-Nicolson implicit scheme.

iii) The Ablowitz and Ladik scheme.

__________________________________________________



,2. Finite Fourier transform or pseudospectral methods.

i) Split step Fourier method [6].

ii) Pseudospectral method by Fornberg and Whitham [11].

In order to compare schemes, our approach for comparison is to (a) fix

the accuracy (L.) for computations beginning at t - 0 and ending at t - T;

(b) leave other parameters free (e.g. At or Ax) and compare the computing

time required to attain such accuracy for various choices of the parameters

[12].

These methods are applied to the hNLS equation (1.1) subject to the

following conditions:

(A) The initial conditions

i) 1-soliton solution

The exact solution of (1.1) on the infinite interval is

2 2-i{ 29x-4 (t -_12) t+Qo.T/2)1
q(x,t) - 2i 2x4(

211e sech(2TJx-8C1t-xO).

(1.3)

where x0 , 11, C and t. are constants.

For initial conditions, equation (1.3) is used at t - 0, and the constants

are chosen to be X0 - 0, 0 - 0, C - 1, and 1] - 0.5, 1, 2, and 3.

ii) Collisions of two solirnns [13]

The exact solution of (1.1) on the infinite interval is

q(x,t) - G(xt)/IF(x,t), (1.4)

where

I(xt) - 1+a(ll )exp(CT1+111)+a(1,2 )expC(1+'q2)

+ a(2,*1 )ex(1Ja2 1)+a(2,2)exp(1J2+2)
2(

+ a(1 2.1 ,2 )exp O~ +1 +llq2 ) 1 5
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C(x,t) = exp.(71 )+exp I M2 )+a (1l,2,1 )exp (Af q2+ T'1)

, (1.6)

+ a(1,2,
2 )exp(TI +(12

.61

2 ),

(1.7)
a(i,j*) = (Pi+P*)

(1.9)

* 2
a(ij) = a ij)

(1.10)

a.(i,j,k) a(i,j)a(l,k )a(j~k )

a(i,j,k. ,A.) - a(i,j)a(i,k )a(i,t )a(j,k )a(j,A. )a(k ,A ),

(1.11)

where * implies a complex conjugate, and

j- Px - (0), , . ip 2 
(1.12)

where PJ and f0) are complex constants 
relating respectively to the 

amplitude

and to the phase of the ith soliton.

For initial conditions, equation 
(1.4) is used at t 0 0, and three

different sets of parameters are 
studied:

1.) PI 1-0.25i, P2 a 0.5+0.3.51, (0) -2 and 1102

in-2 and1.0

i.1) P1  2-0.51, P2  - 1+0.751, (0) a0 ) .

iii) P~ 4-21. P2  3+1. 11(o) -- 9.04, 'q(0) 2.

__ _ __ _ __ _ __ _ _ 2_
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(B) Boundary conditions.

Periodic boundary conditions were used. The period was chosen to

be [-20,20] in the case of small amplitudes and [-10,10] in the case of

relatively higher amplitudes. See Figures (1.1) and (1.2) below.

Iq I
0 .5 1 1 - 1

-20 1-0 0 10 20
x

FIgure (1.1). Initial condition (1.3), 'Q - 0.5 (i.e. Amplitude 1).

4

jqj
3

2

1

-20 -10 0 10 x 20

Figure (1.2). Initial condition (1.3), 1 - 2 (i.e. Amplitude - 4).

" I i I i - _ -- - pI



The numerical solution is compared with the exact solution. In addition,

two of the conserved quantities were computed, namely, fjqj2dx, and

2. The Representation of the NLS Equation Using Numerical Methods:

1. Finite difference methods.

A) Explicit methods.

i) The classical explicit method.

Using the classical explicit method with central difference in time

(for stability), the finite difference representation of equation (1.1) is

m+. m-l qm 2qm.f *
m+ +1-1 2mmq n -q n q n+l- qn~rqn- 2M M*

21t - + 2(q )n qn (2.1)

where Inj p and m> 0.

It is easily shown that this method is linearly (dropping the nonlinear
ter) tabe orAt 1

term) stable for at < 1. The truncation error of this scheme is of

order (O((At)
2  + 0((A)2

ii) A Hopscotch scheme.

The NLS equation (1.1) can be approximated by

a) an explicit scheme:

qm+lq m qm -m.~ m
n -qn nlnn +l + l(Iqlm.. )2 m n+ 2 m

At (Ax) 2 - qn 1 q,. q (2.2)

b) an implicit scheme:

M+l M =~l+ m+1 m~lq n !qn q qn+l-2% +qn-! 'l. m+.. ,m+l.2 me+l
£ qt 2 ~ n-i + [(Iql") 2 qn_,+(Iqln+l) qn+l (2.3)(Ax)2

The hopscotch scheme applies equation (2.2) at odd values of (n+m) and (2.3)

at even values of (n+m). This combination makes (2.3) explicit. If we



write equation (2.3) for m m r-i, and substitute the resulting equation

into (2.2), the explicit scheme (2.2) (after the first time step) may be

replaced by

qn. - 2 q (2.4)

2q

This scheme has truncation error of order (O((4t)) + 0((AX)2)), and

it is unconditionally stable according to linear analysis.

B) Implicit methods.

i) Implicit-Explicit method.

The Crank-Nicolson scheme was used to approximate the linear part and

an explicit average was used for the nonlinear part of the equation (1.1).

The scheme is

qi q l.. m wnm . + m+l m+l

At n 2(Ax) qn-lqn+l-qn q-l

+.tI j2 q mq + Im 2 m (2.5)+(qn-l n-1 <qn+l) qn+l

The scheme is unconditionally stable according to linear analysis. The

truncation error is of order (0((At)) + 0((Ax) 2)). To implement this scheme,

a quasi tridiagonal system of equations is required to be solved at each

time step. An optimization of the Gaussian elimination method is introduced

to solve this system. (See appendix A).

ii) Crank-Nicolson implicit scheme.

The difference scheme for representing equation (1.1) is

q 1 m . m. m 1 m+l m+nl
At 2(Ax)2 n+l-nqn-l+q+l-Zqn +qn-1

+(Iql m 2 q (2.6)+~ ~ {ql2q1 +(qn qn
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This scheme is also unconditionally stable accoriing to linear analysis.

The truncation error of this scheme is of order (0((At) 2 ) + 0%(&X) 2

We briefly remark on how we solve (2.6). Rewrite equation (2.6) as

.qI + (i+k)qml 1 r-i I m m .
n-I n n 1 1+q 13 + (iq*X) qn

+ ,tio q M+li)
2 uqi-l + (Iqmi) 2 q m

n - -N, ... , N (2.7)

and

A st
2(Ax) 

2

where the solution is sought in the region

(-N.Ax<x<N Ax)x(t>mAt, m-1,2,...).

mm m m I
From the periodic boundary conditions, we have q-N q and qN+l q -N+l

for all m. Therefore, by applying equation (2.7) at each mesh point (i.e.,

n = -N+I, ... , N), we can write the totality of equations as

m+l (2.8)

where

m+l

i+x - - q-N+l
2 2

m4-1

- i+x -

k )" i+x qN2

.and
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F'.- 7- tql~+qJ-I } + (i-X)q' + At:[(jq j)2 q,.2 (1-,
j~ 2 j~ 0 Ml i

-jq + -q - i + ( -k q t ( q 1 q .j l q jl

j - -N+1, ... , N (2.9)

The right hand side of equation (2.8) is a function of known values of q

at the previous time level (t - mit) and unknown values of q at the new

time level (t - (m+l)&t). We used an iteration technique to solve the

system (2.8), ad we assumed (only in the right hand side) the values of

qn+l n q to start with. Therefore the right hand side becomes known,

and we used the same optimization of the Gaussian elimination method used

for (2.5) to solve the system (2.8). The resulting values of q at the

new time level were substituted in the right hand side. of equation (2.8)

to start the new iteration, and we solved the new version of (2.8) by the

previous method. We iterate until the condition

maxlql - l',k+ll < tolerance
n-N,... ,N

(where k is the number of iterations) is satisfied. The tteration procedure
m+l, k+l

is repeated at each new time level. The q will be the approximated

solution at the point (nAx,(m+I)At).

C) The Ablowitz and Ladik scheme.

The scheme is

I.- _
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m n-i

ql m I In n jq f+ l Auqn -qn=i_ , 2m m knl N

At -- 2(6%)2 n+l n n k=-

Vj~l +1 M * * + ~
2q le +q I q "' m +1 m+l- n 'n - l |  n [ n qn+l+qn q~

+ qft (qnrl n qn-lqn qn n qn+l k

Mn 
M m + 

n
M*

m+l 2q 4lmq q-1 n tk-qn Z & n - °

+ q n qn - M k-,,_ka

(2. i0)

where

• * (q+ . arl*

Sk  qkq k-1 qk+lqk qu n

1 (I-x) q. Mq1 M 1-(x qkqk )

Ak "

and

This is a global scheme, unconditionally 
and nonlinearly stable, and the

truncation error is of order (0((At)
2) + 0((&X)

2)). A local scheme (with

the same truncatiQu error) from 
(2.10) can be obtained if the sum terms

are zero and the product terms are equal 
to one.

It is convenient to implement (2.10) 
as follows. Write the new time

level equation as

qg" ( 24, q~ M+ % TV B (2.11)
nz4] n +n-l n

where

- 2A'c-2  II << 1
_____A



(At is supposed to be of tho same order as Ax)

and

n-I , n
B - - q + (2-€)qm - [q n+ q Ak)

Bn -q n-i n n-1 Ak-) + C i

A) m m +
n +l) + q (q +qqm+l )2 [qn ( n l+q n l qn qn-1 n "Pn- qn

* n a * n-itaim41 f A mn-I m +1 m 11A k+Zqq +1 +2 Zq qn q- --.+ 2q n qn q n+l 1Ak + 2 -

m n Sm  m+l 1  (2.12)

q n Z AmS k -qn E , 2.1
k---

(2.11) is solved by a version of the Crank-Nicolson back and forth sweep

-method for the heat equation [14,15]. We seek an equation of the form (at

the new time level)

qn+l.= a qn + bn (2.13)

suitable for computing q explicitly by sweeping to the right. For stability

we require lal < 1. Repeated substitution into (2.11) to eliminate qn+l

and q in favor of qn-i gives

bn + [a-(2+-)lb n-i + [a 2 .(2+)a+l]q n-l Bn (2.14)

Requiring the qn- term to drop out determines a (uniquely since jai < 1)

as a solution of

2a - (2+e)a + 1 0 (2.15)

and leaves for bn a first-order difference equation.

I
- ..--- i .-i --- ---- -: - - -im
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The corresponding homogeneous equation of (2.14) has a solution of the

form

b =kn (2.16)

n

where the constant k satisfies

k + [a-(2+e)] - 0 (2.17)

It can be shown that the solution k of (2.17) corresponds to the second

root (other than a < 1) of the quadratic equation (2.15) determining a

above, and that Iki > 1.

It follows that b can be computed explicitly by sweeping to the left,

bn 1  ab - aBn  (2.18)

To obtain the solution qn' first solve for bn from (2.18) then use (2.13)

to calculate qn" In order to calculate the b's, weused an iteration

procedurre. We assumed that qn in equation (2.12) and bN - 0 to

start with, and then we applied the Gauss-Seidel technique [16] (in which

the improved values are used as soon as they are computed) to calculate

the rest of the b's. The calculated value of the bN (=bN) was used to

start the new iteration, and the iteration procedure was repeated until

the condition

maxlhb-(ab -aB)I < tolerance
n--N,... ,N'

is satisfied. Then we used the above procedure by sweeping to the right

by means of (2.13) to obtain the q's. After the calculations of the q' s,

V

II



we substituted their values instead of qn in equation (2.12), and repeated

the same procedure to calculate the b's and then the q's. This procedure

was repeated until the condition

max q -kqilkj < toleranceI
n.-N,. .. ,N

(where k is the number of iterations)

is satisfied. The q n will be the approximated solution at the point

(nix, (m+l) At).

2. Finite Fourier transform or pseudospectral methods.

i) Split Step Fourier Method [6].

For convenience the spatial period is normalized to [0,2n], then equation

(1.1) becomes

22
itq ." TT 2 + 21q 12q

=2 q 2 ql (2.19)

where P is half the length of the interval of interest, and'X- (x+P)i/P.

(Here we take P to be 20 or 10 depending on the calculation).
2TT

This interval is discretized by N equidistant points, with spacing AX -

The function q(Xt), numerically defined only on these points, can be

transformed to the discrete Fouriar space by

-2rrijk
j(k,t) F Pq - 1 -l , t)e N (2.20)

J-0

N N
2' -- 1 -1$ O, 1, --., - 1

The inversion formula is

'Rril k

q(JAX, t) - FEq q^ E q(k,t)e , (2.21)k

N
____-k- ' . . 1, 0_, 1-9,'...,



These transforms can be performed, efficiently with the fast Fourier transform

(FFT) algorithm'[17]. Following [6] in order to apply the split step Fourier

method for equation (2.19) we (a) advance the solution using only the

nonlinear part:

- 21 q12 'q. (2.22)

This can be solved exactly,

Z(Xt) - e -2iI (x'0 ) 2tq(X ,0 ) (2.23)

where q(Xt) is a solution of equation (2.22) and q(X,O) is the solution

of equation (2.19) at t - 0. (b) advance the solution according to

2
iqt M T 2 q X(2.24)

P

by means of the discrete Fourier transform

q(~ ) -1 ik Atn 2/P24
q (X ,t+t) - F-(ekF(q(X ,t))) (2.25)

This method is second order accurate in At and all order in Ax, and is

unconditionally stable according to linear analysis.

ii) Pseudospectral method (Fornberg and Whitham) [11].

This is a Fourier (pseudospectral) method in which q(x,t) is transformed

into Fourier space with respect to x, and derivatives (or other operators)

with respect to x are then made algebraic in the transtormed variabl,.

Again for convenience the spatial period is normalized to [0,2n]. With

this scheme, qXX can be evaluated as F-li2 k 2F(q)]. Combined with a leap

frog time step the NLS equation (2.19) would then be approximated by

i*



2
q(X,t+At) - q(Xt-At) + 21At M- F 1 (k2P(q(X,t))

P2

- 4iAtj 12q (2.26)

Using the ideas of Fornberg and Whitham we make a modification in approximating

equation (2.19) as follows:

q(X,t+At) - q(X,t-At) + 21F (sin(-- At)F(q(xt)))
P

- 2q (2.27'

The difference between equations (2.26) and (2.27) is in the approximation

of the linear equation (2.24). The linear part of equation (2.27) will

be exactly satisfied for any solution of equation (2.24) (see [11]). Also

it turns out that equation (2.26) is linearly (dropping the nonlinear term) f
stable for a 2Af ) <2 , while equation (2.27) is unconditionally stable(Ax)2 +

according to linear analysis.

3. Conclusions.

Various numerical methods are used in order to approximate the NLS

equation (1.1), namely; (i) The classical explicit method (2.1), (11) Hopscotch

method (2.2), (2.3), (iii) Implicit-Explicit method (2.5), (iv) Crank-

Nicolson implicit scheme (2.6), (v) The AblowLtz and Ladik scheme (2.10),

(vi) The split step Fourier method (2.23), (2.25) and the (vii) Pseudo-

spectral method of Fornberg and Whitham (2.27). We obtained a comparison

between the Ablowitz-Ladik scheme and the other utilized schemes. Our

approach for comparison is to (a) fix the accuracy (L,) for computations

beginning at t - 0 aud ending at t - T; (b) leave other parameters free

- .*--



(e.g. At, or Ax), and compare the computing time required to attain such

accuracy for various choices of the parameters. For the comparison two

sets of initial conditions were studied: (A) 1-soliton solution with

different values of the amplitude, (B) Collisions of two solitons with

different values of the parameters. According to this approach we have

made the following conclusions:

1) The schemes Explicit (i), Implicit-Explicit (iii), and the Hopscotch

(ii) took more computing time than the other schemes ((iv), (v), (vi), (vii))

and the difference in the computing time increased as the amplitude increased.

The Hopscotch method (ii) took less computing time than the other two methods

((), (iii)) for the 1-soliton cases, while the explicit (i) method took

less computing time than the Hopscotch (ii) and the Implicit-Explicit (iii)

methods for the 2-soliton cases.

2) The previous three methods; Explicit (i), Hopscotch (ii), and

Implicit-Explicit (iii) do not appear in Tables (3.1), (3.4), and (3.7)

since extremely long computing time would be required.

3) The Crank-Nicolson implicit method (iv) took more computing time

than the Ablowitz-Ladik (local and global), the split step Fourier method

and Fornberg-Whitham method in the case of 1-soliton, and it became comparable

with the Ablowitz-Ladik local scheme for high amplitudes. In the case of

2-solitons, Crank-Nicolson took less computing time than the Ablowitz-Ladik

local scheme.

4) The Ablowitz-Ladik global scheme took-more computing time than the

local scheme in the case of small amplitudes, but for high amplitudes it

was roughly five times faster than the local, and the Crank-Nicolson schemes.

5) The pseudospectral method is roughly two times faster than the

Abiowitz-Ladik local scheme for small amplitudes, but it is much faster

for high amplitudes. This method is roughly two times faster than thek

__1 . •,l___j
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AblOwitz-Ladik global scheme for high amplitudes. This method only proved

to be faster than the split step Fourier method for small amplitude 2-soliton

cases.

6) The split step Fourier method is faster than all the utilized

methods for small and large amplitudes for the 1-soliton case. In the

averagewas three times faster than the Fornberg-Whitham method. Also it

proved to be faster than the Fornberg-Whitham method for high amplitude

2-soliton cases. The Tables and Figures exhibit the results.

As a conclusion we found that the experiments we conducted that the

split step Fourier method was the best method for the NLS equation, followed

by the pseudospectral method then the Ablowitz-Ladik global scheme. However

we believe that if we were able to go to very high amplitudes (our machine

capability prevented this) the Ablowitz-Ladik global scheme would improve

dramatically and would prove to be better than the other methods. However

it should be noted that the NLS equation is quite unusual in the sense

that the nonlinearity is especially simple. This has a dramatic effect

in the split step Fourier method - see equation (2.22) - which means that

both steps admit to essentially exact methods. Generally this will not

be true (see part I1). We also note that whereas the Ablowitz-Ladik scheme

is O((At) 2,( AX) 2) the split step Fourier and Fornberg-Whitham methods are

of order O((Ct)2, (Ax)P) for all p. (See also the calculations for the KdV

equation in part III). It is also worth mentioning that we tried the sweeping

technique in implementing the Implicit-Explicit and the Crank-Wicolson

methods, and folind that it did not affect the overall conclusions.

All the numerical calculations were inspected at every step by using

the conserved quantities fiql2dx, and f(iqI4-I_-,12 )dx (Table (3.1),...,

Table (3.7)). The two conserved quantities were calculated by means of

7 Simpson's Rule (181. The Ablowitz-Ladik global scheme is the only utilized

P. _ __ O_
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scheme which has an infinite number of conserved quantities.
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Figure (3.1). Displays the computino time (E) which is required
by each utilized method given in Table (3.1).
l-soliton, amplitude 1.

"16[
141

13.

12

1.1* ri
10. 1. Explicit.

2. Implicit & Explicit.93. Implicit (Cr,nk-Nicolson).
4. Hopscotch.

8 5. Split step Fourier method.
V6. The Ablowitz and Ladik local scheme.

7 7. The Ablow-ritz and Ladik global scheme.7 8. Fornberg and Whitham method.
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3

2
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Figure (3.2). Displays the computing time (E) which is required
by each utilized method given in Table (3.2).
l-soliton, amplitude - 2.

- -.,18 ra 0

00 N

14

13.

12 £

10 1. Explicit.
2. Implicit & Explicit.

9 3. Implicit (Crank-Nicolson).
4. Hopscotch.
5. Split step Fourier method.

8 6. The Ablowitz and Ladik local scheme.

7 7. The Ablowitz and Ladik global scheme.
8. Fornberg and Whitham method.

6

5
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3

2

1 2 3 4 5 6 7 8
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Figure (3.3). Displays the computing time (E) wlieh is required
by each utilized method given in Table (3.3).
1-soliton, amplitude 4.

18

-4

13

141

13

12

11 IJ
10 1. Implicit (Crank-Nicolson).

2. Split step Fourier method.
9 3. The Ablowitz and Ladik local scheme.

4. The Ablowitz and Ladik global scheme.
8 5. Fornberg and Whitham method.
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Figure (3.4). Displays the computing time (E) which is required
by each utilized method given inTable (3.4).
1-soliton, amplitude - 6.

18

15
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13

12

10 1. Implicit (Crank-Nicolson).

2. Split step Fourier method.
3. The Ablowitz and Ladik local scheme.
4. The Ablowitz and Ladik global scheme.

5. Fornberg and Whitham method.
8

7

6

5

4

3

2

II
1 2 3. 4 5

I Method

*: Each unit in time a 4 minutes.

--- ~*-- -- _______ ____ .
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.Figure (3.5). Displays the computing time (W) w shch is required
by each utilized method given in Table (3.5).

Two solitons with amplitudes 0.5 and 1.

-17.

16

14.

13

12

11.

10 1. Explicit.
2. Implicit-Expl-icit.

9 3. Implicit (Crank-Nicolson)
4. Hopscotch.
5. Split step Fourier method.
6. The Ablowitz and Ladik local scheme.
7. The Ablowitz and Ladik global schemt.

7 8. Fornberg and Whitham method.

6

5

32

1 2 3 4 5 6 7 8
Method
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Figure (3.6). Displays the computing time (E) which is required
by each utilized method given in Table (3.6).
Two solitons with amplitudes I and 2.

17

16 i

15

14

13

12

1. Explicit.2. Implicit-Explicit.

9 3. Implicit (Crank-Nicolson).
4. Hopscotch.

8 5. Split step Fourier method.
6. The Ablowitz and Ladik local scheme.
7. The Ablowitz and Ladik global scheme.

7 8. Fornberg and Whitham method.

6

5

4 r

3

2

0 1

1 2 3 4 5 6 7 8 Method
: Each unit in time a 2 minutes.

I L 

, , J, ,_
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Figure (3.7). Displays the computing time (E) which is required
by each utilized method given in Table (3.7).
Two solitons with amplitudes 3 and 4.

ir

-V-

.17,

1l6

15

14

13

12

10 1. Implicit (Crank-Nicolson).
2. Split step Fourier method.

9. 3. The Ablowitz-and Ladik local scheme.
4. The Ablo witz and Ladik global scheme.

8 5. Fornberg and Whitham method.
8b

7

6

4

2 .

101 1_ ___

1 2 3 4 5
Eethod

*:Each unit in time -5 minutes.
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APPENDIX A

AN OPTIMIZATION OF GAUSSIAN ELIMINATION

This method seeks to optimize Gaussian Elimination by eliminating

unnecessary storage and multiplication by zeros. To begin we have

the following quasi tridiagonal system

dI  u x1  b

£ d u x b
1 1 2 2 21

AN-N N b

Instead of storing the NxN matrix, we store the augmented matrix

in an Nx4 matrix whose elements are the tridiagonal elements and the

b 'a. We then perform Gaussian elimination on the Nx4 matrix keepingi

in mind their original locations in the matrix. When this

is done we have an uPper triangular matrix and an original system is

of the form

d u 1  '1 b

d u x b2 2 2 2

dN-luN-l
* *

dN x bNJ NL
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where * values are the updated elements. Using back substitution we

obtain the solution. The total number of operations required to obtain

the solution using this method is (9N-12). The same idea can be

applied to quasi pentagonal system of equations and so on.

6I
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ON ANALYTICAL AND NUMERICAL ASPECTS OF CERTAIN NONLINEAR EVWLUTION EQUATIONS,

PART III: NUMERICAL, KORTEWEG-DE VRIES EQUATION

ABSTRACT

Various numerical methods were used in order to approximate the Korteweg-

de Vries equation, namely: (1) Zabusky-Kruskal scheme, (ii) Hopscotch method,

(iii) A scheme due to Goda, (iv) A proposed local scheme, (v) A proposed

global scheme, (vi) A scheme suggested by Kruskal, (vii) Split step Fourier

method by Tappert, (viii) An improved split step Fourier method, (ix) Pseudo-

spectral method by Fornberg and Whitham. Comparisons between our proposed

scheme, which was developed using notions of the Inverse Scattering Transform,

and the other utilized schemes are obtained.

l. Introduction.

The Korteweg-de Vries equation (KdV) introduced in [1] was originally

derived in order to describe the behavior of one-dimensional shallow water

waves with small but finite amplitudes. More recently, this equation also

has been found to describe wave phenomena in plasma physics [2,3], anharmonic

crystals ,4,5] bubble-liquid mixtures [6,7] etc. There has been great

interest in thia equation because of its special properties. A substantial

review of this work can be found in [8,9]. Zabusky and Kruskal (10] dis-

covered the concept of solitons localized waves with special interaction

properties, while studying the results of a numerical computation (describing

an anharmonic lattice) on the KdV equation. This motivated the work of

Gardner etal [11] and led to the explosion of both the theoretical and

numerical work which is still growing today. Many analytical results are

available for equations which exhibit exact multisoliton behavior, when an
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associated scattering problem can be found. Of course there are many

examples inexact, or quasi-soliton behavior. For these problems little

or no analytical results are known and numerical studies are essential in

order to develop an understanding of the phenomena. This work aims to

compare a proposed scheme which was developed in part I of this paper using

notions of the inverse scattering transform (IST) and certain other known

numerical methods for the KdV equation

ut + 6uu xu (1.1)

This work can be extended to cover many other related equations as well.

The following numerical methods are applied to the KdV equation:

1. Finite difference'methods.

a) Explicit methods.

i) Zabusky and Kruskal scheme [10,12].

b) Implicit methods.

i) Hopscotch method [13].

ii) A scheme due to Goda [14].

iii) The proposed scheme [15].

Lv) A scheme suggested by M. Kruskal [16].

2. Finite Fourier transform or Pseudospectral methods.

i) Split step Fourier method introduced by Tappert [17].

ii) Pseudospectral method introduced by Fornberg and Whitham [18].

As in part II in order to compare schemes, our approach for comparison

is to (a) fix the accuracy (La) for computations beginning at t - 0 and

ending at t - T; (b) leave other parameters free (e.g. At, or Ax), and

compare the computing time required to attain such accuracy for various

choices of the parameters.
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Various methods were applied to the KdV equation (1.1) subject to the

following conditions:

(a) The initial conditions:

i) 1-soliton solution.

The exact solution of (1.1) on the infinite interval is

u(xt) - A seth2 (kx-wt-10) (1.2)

wbere

w - 4k2 , A - 2k2 andT 0 = constant.

For initial conditions, equation (1.2) was used at t 0, and different

values of A are tested and. I 0 was chosen to be zero.

ii) Collisions of two solitons.

The exact solution of (1.1) on the infinite interval is

u(x,t) 2(log f) x' (1.3)

where

"1  112  11 2+A 2f l+e +e +e

kx-k 3t + TIi(0

and

eA j -k 2

I.. •

For initial conditions, equation (1.3) w.;s used at t - 0, and vwo different

sets of values of the parameters were studied, namely;

kI 1, k (0) I°  0, T, 0). 2r
_ 2_/2,_11_1_2

.... -... ----' ..- ____________ ___________________________
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and

ki - 1, k- V, 0  0, (0° ) = 10.73

and the solitons were allowed to interact and return to their original

shapes.

(b) The boundary conditions.

Periodic boundary conditions on the interval C-20,20] were imposed.

The numerical solution is compared with the exact solution. In addition,
9

two of the conserved quantities were computed, namely; fu-dx, and

f[2u3_ (u x) 2 Idx.

2. The Representation of the KdV Equation Using Numerical Methods:

1. Finite difference methods.

i) Zabusky and Kruskal scheme.

In their original work, Zabusky and Kruskal [10], used the following

explicit leapfrog finite difference scheme:

in+l r-i At n m nMmu u -2-- (U +um+u )(u -u )
n nx n+l n n-I n+l n-i

At -- (u M 2u M +2ur M u (2.1)

(Ax)3  n+2 n+l n-lUn-2)

where um - u(nAx,mAt); n and m are integers. This scheme is consistent
n

with equation (1.1) and the truncation error is of order (0((At) 
2) + M((Ax)2)).

The linear stabillty requirement for this scheme is

4- 1-2u + I I <j72 (2.2)
AX 0 ~(Ax)2 3/

(where u0 is the maximum value of u in the range of interest).

This means that a very small time step must be used to preserve stability.

For the initial time step one may use the uncentered scheme
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T0 - (u O . +uO+uO )u O_-u 0  )
i n Ax n-i n -i ni n-i

1 (u0  2u0 +2u0  -u 0 2) (2.3)

2(x) n--2 n+1' n-- n-2

b) Implicit Methods.

i) Hopscotch method.

In 1976 Greig and Morris [13) proposed a Hopscotch scheme for the

KdV equation (1.1).
2

With f 31-, the scheme is2'

u M+1 um 3 t( ' - At (um -um m M

n-3Ax n- n-i )3 Un+ -2 n+ iUn-l-Un-2

(2.4a)

m+l m At I M_,+l .u m+i + m+l - r+
-t f+ mj'4;2 Al n-u -

n n- Ax n+l-n- 3 n_2-n+ n-in-

(2.4b)

To implemen.t the scheme, we employ (2.4a) for those grid points for which

(n+m) is even and (2.4b) for those for which (n+m) is odd. A quasi tridiagonal

system of equations must be solved at each time level. An optimization

of Gaussian elimination method is used to solve this system (see part II,

Appendix A). The linear stability requirement for this scheme is that [13J

At 1 I (2.5)

(Ax) 3  (Ax) 2 u.-2

(u0 is the maximum value of u in the range of interest).

2 2
The truncation error of this scheme is of order (0((4t) + 0((Ax)2)).

i) A scheme due to Goda.

This implicit scheme for approximating the KdV equation (1.1) is given

by

,,, - .4 . . ...



1 M+l m. 1 [ m+. in n r.nI-i m r, .,
T-(u.-n +L tn+lu n +n+l an-i (Un' n-l

+ 1 1 m l 12 = 0 (2.6)
+1 Un+2 'n-Ii -n- 1-n-21
2 (Ax)

The truncation error of this schenve is O(At) + O((ax) 2). This scheme

is unconditionally stable according-to linear analysis. In order

to apply this scheme, Ue have to solve a quasi pentagonal system of

equations at each time level.

X X X. x X

x x x* x x

x x x x x

x x x x x
I X .X X

I X x X X

x x x x x x

x . x x x

x x x x x
Lx x x x x

An optimization of Gaussian elimination method is used to solve this

system of equations.

iii) The proposed scheme which is based on the IST (see part 1).

First, consider the local scheme with A ( 0 )  which can be
2 (Ax)3

written as

M+- m
u -n 1 , M+1 m-1 i+-M., m .m . . M

At 2 )3 un-l-73 n +3un+l-Un+2+un-2- n- n- n+l

3 M2 +1 2 1 xm4-. inl I+l

m a m *
--u (it -U +u )j (2.7)

n-il n - n-2

- _ _ .- ~ - -- --- .-- ~ --- ~-7
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To implement this scheme, equation (2.7) for the new time level can

be written as (16]

n+2 Un+l n - Un-i (3+t)u = B (2.8)

where

S2 (Ax) 3 3€---<<i1
At

(At is supposed to be of the same order as Ax)

and

M m mI
n Un 2  n-1 U+l +(+~ n

2 m 2 4-1 2 2 n+1- rn-I- m+14 m+1)
-3CAx)-.[C%) -(u (Ax-),~ [u'i (u +Uini

Un (Un n,+U n2 4j (2.9)
n-i n n-i n-2

This can be solved by a version of the Crank-Nicolson back and forth sweep

method for the heat equation (20]. We seek an equation of the form

m+ au +b M'l (2.10)

m+1
which is suitable for computing u explicitly by sweeping to the right.

For stability jal < 1. Repeated substitution into equation (2.8) to eliminate

m+, um a u10 l in favor of unm+ gives
Un 2  n+ 1,  and 

n~

nd-I ++ 2_ 3)b- +4 a 2. -1) m1ibn+ + (a_3)bn + (a 2 t+3+0 m+1 + (a-3. 23a+a -l)u Bn

(2.11)

Requiring the Um_1 term to drop out determines a (uniquely since lal S_ 1)
U-1

as a solution of

--- *--l-. - - . - - I llnI.

I.
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(a-1) 3 + ca 0 (2.12)

and leaves for b (at the new time level) a second-order difference
n

equation. The corresponding homogeneous equation of (2.11) has a

solution of the form

b - k n  (2.13)

n

if the constant k satisfies

k2 + (a-3)k + a - 3a + 3 + 0 (2.14)

It can be shown, or verified, that the two roots k of this equation

are the two roots with Iki > 1 other than that of the cubic equation

determining a < 1 above. It follows that b can be computed explicitly

by sweeping to the left

bni = (3a-a 2 )bn - abn+I + aBn (2.15)

(equation (2.15) is obtained from (2.11) and (2.12)).

To obtain the solution un, first solve for bn from (2.15) then use (2.10)

to calculate u.n

In order to implement this sweeping technique, the same iteration

method used for the sweeping technique discussed in Part II was used. The

only difference is that we have to assume initial values not just for b

but also for bn+i.

Second, for the global which can be written as (Part I, Equation (2.30),).



n(A(O) 2E~ S I WI(A_2 + CI-2)

L-1

(0) fl n-i -S 1

+ Sm ~ [- (V Y- 4. I N 1

9+1x sl~ Z~ -S 1 ~ 1 +) +. yT *- (y-l1) 1W n-

In4.1 m

1 E T ne- n (2.16)
a-m nl I- ~ - (1-Se+ )(1-S m

where

E (A2 )SI 5m+l D(2) M.1
n n n- n 1 G S k~k

n n-1 1 In C = - + E-w

T -~M +l ii* s~ (4 ) sm( 4 ),
ni n+1 a +l~ Sn~i+ n n+i n n ni - n -

Z n - (A- 2 + E qW )WN n D- 2 + I F,

WI - H yI

n 1 -10 1 i-snM~
Wa i

HI,_ A(Q(Sm(ST-1-sD )

Hk - k+1kk k 1Gk k (Sk+l)D

F - A( 4 )(S"+.IWJStlf- +D(4 S _ml,
Ji J- - J- i-

p = A ( 4 (S~'-5" )W + D( 4 (S~ 1 -Sm~1 y ),

-j (sj-4-s i)WjA ' (S- l - D



2 , " o) I (2 _ 2 i

- 3--, 3

_ 2) A(O) O(2) 2 (0) 13()-- - +-Via, D_ -S A - y-or,

4 1 1(0) D a (4) A (0) + A = t
( 0 )- - 4 - A) 3 U '

2u

A(  - arbitrary constant, and Sm - 1 - e n

Wh ( 0 ) a3
with A- , the same idea is applied and the only difference is in

the Bn tert. This proposed scheme is unconditionally stable, and has a

truncation error of order (0((At)2 + 0((A)2)).

iv) A scheme suggested by M. Kruskal.

Kruskal (16] has suggested the following numerical scheme
-m+- uM  M+1- m+l. um+1 0+1n -n + un+2 3un+l +n . un-l.

At 2 (X) 3 •

ata

+u,+1-3u n+3u 1l-u - 0

2(Ax)3 (2.17)

for

ut + u= M 0 (2.18)

Kruskal did not suggest any particular numerical scheme for the nonlinear

part of the KdV equation (1.1). The following scheme was used to solve

the KdV equation (1.1y:

U*44-um m+I .3 3u1--+1~ +1
Un n + 2-3. 1 . n n-,

At 2(Ax) 3

un+l-3n+"V=%-Un-2 , 2. m+l 2,+1"+ _ 2 1 1 3 - + 3 (t i ( n , U )

2(M) 2 ax n+l n -i2m 2 1-0 (2 m+19) m+ (u )n 1 -(u )nZ + - un  (un+1-U 1)

I. 'I
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To implement this scheme, the above mentioned sweeping/iteration

technique was used. We tried several values of 0 and experimentally we

found that 0 = - gave the best results.

This scheme is unconditionally stable according to linear stability,

and has a truncation error of order (0((At) 2 ) + 0((Ax) 2)).

2. Finite Fourier transform or Pseudospectral methods.

i) Split step Fourier method by F. Tappert.

For convenience the spatial period was normalized to [0,2n], then

equation (1.1) becomes

3
U + 6 ( UU, + n UXx x - 0 (2.20)

p

where p is half the length of the interval of interest, and X - (x+p)n/p.

As discussed in part II of this paper the essence of the solution

method is to alternate between two steps: (1) advance the solution using

only the nonlinear term by means of a (implicit) finite difference

approximation. (2) advance the solution using only the linear term by

means of the discrete fast Fourier transform (FFT).

To implement this method for the KdV equation (2.20), as the first

step, one first approximates,

u + 6 uu -0. (2.21)

A straightforward discretization is:

) +(t ) (u )nj (2.22)
n n 4 p 6X .*n+l n-l n+l n-

where Z is a solution of equation (2.21) and u is the solution of equation

(2.20). For the second step, we would take,

u(Xj, t+At) - F-l(eik3n3j /ptF ( (X))) (2.23)



where F denotos discrete Fourier transform and F-1 Its inverse.

This scheme Is second order accurate in time and space (which comes from'

t ulng equation (2.22) to approximate oquation (2.21)), and uncunditLionally

stable according to linear analysis. In order to find F(Z) and F-1 the

FFT technique is used. We have found however that an improved discretization

of (2.21) works considerably better. Specifically the truncation error of

the split step Fourier method is improved to be of order (0((At) ) + 0((Ax) 4))

instead of order (0((At)2 ) + 0((X))), by approximating equation (2.21)

according to

l n At YT -,2 m+I 8 -2,m+1 (-2.ni
u 1  u -"- u n+l u n- n+2

+ -2 .ml 2m 2 m 2m 2 (.4

n-2( + [8(u )n4- -
8(u ) -Cu )( +(L )n_2 (2.24)-2n n-l n+2 n- 2

Also, one may improve the truncation error to be of order (O(At)2 +O(Ax)p )

for all p, see the pseudospectral method (Fornberg and Whitham) below.

ii) Pseudospectral method by Fornberg and Whitham (18].

As mentioned in part II of this paper, this is a Fourier method in

which u(x,t) is transformed into Fourier space with respect to x. Again

for convenience the spatial period is normalized to (0,2n]. This interval

is discretized by N equidistant points, with spacing AX - The function

u(X,t), numerically defined only on these points, can be transformed to

the discrete Fourier space by

u(k,t)-Fu - Ej u(JAX,t)e (2.25)

N N

The inversion formula is

u(JAX,t) - flu 1 E;(k,t)e2Tijk/N (2.26)
uk

N 2

______- ____, _ ... ,______-__,___o,_______...._____,___-__
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These transforms can be performed, efficiently with the fast Fourier transform

algorithm [21]. With this scheme, u X can be evaluated as F-ltikFu], u

as F- (-ik 3Ful and so on. Combined with a leap-frog time step the KdV

equation (2.20) would then be approximated by

u(X,t+At) - u(X,t-At) + 21 - At u(X,t)F- (kF(u))
p

3- 21 At- F F-(k F(u))= 0 (2.27)

P

Fornberg and Whitham make a modification in the last term, however, and

take

u(X,t+At) -.u(X,t-At) + 2i -M.At u(X,t)F-l(kF(u))
p

-i
1  3 k 

(228
21F-sin(-T3  At)F(u)} - 0 (2.28)

p

The difference between equation (2.27) and (2.28) is in the approximation

of the linear equation

3
ut + a-3 uXX " 0 (2.29)

p

The linear part of equation (2.28) is exactly satisfied for any solution

of equation (2.29) [18]. Also it turns out that the linearized stability

condition is less restrictive for (2.28) than for (2.27): at._3< 3- 0.1520
(Ax) 2 --

compared to At < 0.0323 (for details see [18]).(Ax) 3 ,

Since the Fornberg and Whitham scheme is explicit, it is natural to

consider Crank-Nicolson type implicit version, e.g.
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u(X,t+At) - u(X,t) + 31AtTr/ptu(X,t+At)F (kF(u(X,t+At)))

+ u(X,t)F- l(kF(u(X,t)))) _ iAt ) 3 ,- 1 (k 3 F(u(XtAt)))

-12 3

+ F-1 (k 3F(u(Xt))) - 0 (2.30)

This scheme (2.30) is unconditionally stable according to linear stability.

We make some remarks about (2.30) in the conclusions.

3. Conclusions.

Various numerical methods are used in order to approximate the KdV

equation (1.1), namely; i) Zabusky and Kruskal scheme (2.1), (i) Hopscotch

method (2.4), (iii) A scheme due to Goda (2.6), (iv) A proposed local scheme

(2.7), (v) A proposed global scheme (2.16), (vi) A scheme suggested by

Kruskal (2.19), (vii) Split step Fourier method by Tappert (2.22)- (2.24),

(viii, Pseudospectral method by Fornberg and Whitham (2.28).

As in part I, our approach for comparison is to (a) fix the accuracy

(L ) for computations beginning at t - 0 and ending at t - T; (b) leave

other parameters free (e.g. At, or Ax), and compare the computing time

required to attain such accuracy for various choices of the parameters.

Two sets of ini,.al conditions were studied: (A) 1-soliton solution

with different values of the amplitude, (B) collisions of two solitons

with different values of the parameters. According to this approach we

have made the following conclusions:

1) The scheme of Goda required a long time compared to the other

((), (ii),(iv), (vi), (vii), (vilii schemes.

2) Zabusky and Kruskal's scheme was good for low amplitudes, but

it needed more computing time than the other remaining methods ((ii),(iv),

-~ 4
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(vi),(vii),(viii))for high amplitudes.

3) The calculations for the previous two methods; Goda, and Zabusky-

Kruskal, were not carried out for the 1-soliton case with amplitude = 4.

They needed very long computing time.

4) The Tappert and Hopscotch schemes took less computing time than

the previous two schemes, and they behave almost the same for fairly

small amplitudes. For relatively high amplitudes the Tappert scheme turned

out to be better.

5) The suggested scheme by Kruskal is in general faster than the

previous schemes (Ci), (ii), (iii),(v),(vii)).

6) The Fornberg and Whitham method is much faster than the suggested

scheme by Kruskal, it is roughly three times faster for small amplitudes

and six times faster for high amplitudes. Also (2.27) was tried, but (2.28)

proved to be somewhat faster. In addition, the implicit version (2.30)

was implemented and did not prove to be faster than (2.28).

7) The proposed local scheme is the best amongst all the utilized

schemes. It was roughly eight times faster than the suggested scheme by

Kruskal. (See remark belwo equation (2.18)). This certainly shows that

the approximation of the nonlinear term is crucial. Also, it was roughly

one and a half times faster than the Fornberg and Whitham scheme. This

despite the fact that the local scheme is only O((At)2 , ( 2) whereas

2 pFornberg and Whitham method is of order 0((At) (Ax)P) for all p. These

results suggest that "IST generated" schemes will be good approximations

for equations which are in fact exactly solvable by the IST. The proposed

global scheme was implemented and proved to be faster than some of the

utilized schemes, but much slower tnan its local version. Since the global

scheme is so complicated and cumbersome, we are not convinced that our

methods of implement were optimal. Optimizing the implementation of our
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global scaeme will be under further investigation in the near future. (The

following Tables and Figures exhibit the results). All the numerical

calculations were inspected at avery step by using the conserved quantities

fu2dx, and f(2u-(ux) 2)dx. (Table (3.1), ..., Table (3.5)). The two

conserved quantities were calculated by means of Simpson's Rule [22]. The

proposed global scheme is the only utilized scheme which has an infinite

number of conserved quantities, and true soliton solutions.
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Figure (3.1). Displays the computing time (E) which is required by
each utilized method given in Table (3.1).

1-soliton, amplitude 1.
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10. 1. Zabusky and Kruskal.
2. Goda.

9 3. Hopscotch.
4. Tappeft.

8 5. Kruskal.
6. The proposed local scheme.

7. The proposed global scheme.
7 8. Fornberg and Whitham.
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Flgure (3.2). Displays the computing time (E) wlL(h is required by
each utilized method given in Table (3.7).
1-soliton, amplitude 2.
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Figure (3.3). Displays the computing time (F) which is required by
e,-,h utilized method given in Table (3.3).
1-soliton, amplitude 4.
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Figure (3..1). Displays thu co1puLing Limc' () ; 4ich is required by

each utilizod method gcv,2_ in T:hl: (3..)
Two solitons with amplitudes 0.5 and 1.
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8. Fornberg and Whitham.
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Figure (3.5). Diplays the computing tine (E) w'jich in requhied by

each utilized method given in TAble (3.5).

Two solitons with amplitudes 0.5 and 2.5.
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NONLINEAR RESONANCES AND COLLIDING SPHERICAL ION-ACOUSTIC SOLITONSt

D. J. KAUP
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Received 15 January 190

We find that the recent experimental results by Ze. Hershkowitz. Chan and Lonnsren on colliding spherical
ion-acoustic solitons can be explained in terms of a nonlinear resonance, wherein the two colliding solitons at a
resonance point generate and create a third soliton of larger amplitude. However, estimates show that the resonance
width is less than the required growth length, therefore full growth is not achieved, in agreement with the experimental
results.

Recently, Ze, Hershkowitz, Chan and Lon- wave trains to interact. The usual linear
ngren [1] have presented experimental evidence resonance occurs for plane waves and when we
that it is possible for colliding spherical ion- have only three plane waves, it satisfies
acoustic solitons to create new nonlinear
objects, presumably also solitons. We shall k + k2 = k3, (a)
present theoretical calculations to show that this
is theoretically possible, and that there is a very wi(k,)+ t51(a2) = £O(k3). (ib)
good quantitative agreement between the theory
and experiment. We shall call the theoretical In (I), ki is the wave vector for the ith wave,
principle involved "nonlinear resonance", and and wi(k) is the frequency of the ith wave, as a
shall first quickly outline its concepts and his- function of k. Although the interaction arising
tory. when (1) is satisfied is indeed nonlinear (it is

One important and very significant feature of called the three-wave resonant interaction [71),
solitons has been a continual paralleling of nevertheless we shall call such a resonance a
linear principles and concepts [2], even though "linear resonance", because it involves only
the soliton is indeed a nonlinear object. Of linear parameters (i.e. -wave vectors and
these, we mention the "inverse scattering frequencies) of plane waves. A "nonlinear
transform" [3] which is much like the linear resonance" therefore will be defined to be a
Fourier transform, the infinity of conservation resonance involving nonlinear (i.e. -soliton)
laws (also found in linear systems), the existence parameters.
of action-angle variables [31, quantum theories There is a very strong parallel between a linear
for such objects [4], etc., as well as "nonlinear resonance and a nonlinear resonance. In order
resonance" [5,6], which is very analogeous to to bring out this parallel and to illustrate the
the resonance condition for three or more linear analogies, we shall first state certain facts

concerning solitons. The structure of any soliton
is typically of the form

tResearch supported in part by NSF Grant No. MCS7S-
03979 and ONR Contract No. N00014 76C 0667. q - Aft(#,, #i), (2)

0167-2789/81/0000-.0001502.50© North-Holland Publishing Company
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390 D. J. KauplNon inear resonances and colliding spherical ion-acoustic solitons

where A is an amplitude and ', and 0j are the Schr6dinger equation
real and imaginary parts of a complexified phase
(2]. This complexified phase may be defined iq, = - - 2(q*q)q, (7)
directly from the linear phase, which is simply
that phase associated with a plane wave solution we have w(k) = k2, f1(4,,, O,) = e~"sech(4,), 0
of the linear limit of the nonlinear soliton equa- in general, q > 0 and A = i(C - C*).
tion. We shall shortly illustrate this with a cou- The point to be noted in the above, is that a
ple of examples. For simplicity we shall first soliton is like a linear wave, in that it satisfies
only consider one-dimensional problems, where exactly the same phase relation that a linear
the general linear phase for a plane wave is wave does. It differs in that the phase relation

has become complexified as in (4) and (5), and in
* = kx - w(k)t + Oo. (3) that the envelope now has a unique shape, as a

function of 0, and 0,. These statements are also
Now, it is fairly well known [21 that if we want true for higher-dimensional systems, like the
to know what the complexified phase required Kadomtsev-Petviashvili equation (81 and a two-
in (2) is, one simply needs to replace the real dimensional form of the nonlinear Schr6dinger
parameter k in (3) by the complex parameter 2C. equation (9], provided we replace k, x, C, and 17
Then (3) becomes complex in general and by appropriate vector quantities.

In addition to the one-soliton as given in (2),
0, + i~, = 2Cx - w(2C)t + 4Oo, (4) there exists also two-, three-, etc. soliton solu-

tions. In particular, the two-soliton solution is
where in general typically of the form

C = 4 + iil. (5) q = A(Ci, C1, Cz, C?)f2(1,,, 01j, 02,, 02). (8a)

Of course this does not determine the functional Again, the exact dependence of A on the C's
form of fi in (2). It only determines how the real and of f2 on the O's will be determined by the
and imaginary parts of the complexified phase in specific nonlinear problem. A general feature of
(2) depends on x and t, and thereby the group (8a) is that in certain regions of x and t, (8a) will
velocity and the phase velocity. The important approach sums of one-soliton solutions as in (2).
point is that the phases of solitons will follow Another feature of (8a) which seems to be even
upon knowing the phase of the plane wave solu- lesser known is that for certain ranges of the
tion of the associated linear problem. parameters, and in certain regions of x and t,

We shall now illustrate this with a couple of (8a) can degenerate into the form
examples. For the KdV equation

q -A(C, ± C:, CT-± C?)f1( ,1 ± 2r, ,,- ± ). (Sb)

q + qq + =O, (6)
This form typically occurs in the region of x and

the linear problem is q, + Pq. =0 , so we have t where the two solitons are considered to be
from the linear problem that w,(k) = - Pk3, overlapping and "interacting". One should now
which is the functional form required in (4). ask himself the question of what would happen
This then determines 4, and 0j. From the non- if there would exist a third value of C, C3, such
linear problem, one then finds the remainder of that we could find a ,3 where 01 ± 02 = 03. Then
the information, which is f'(o, 0j) = sech 2(0j, (8b) would become (2) with C3 satisfying (4).

=0, il > 0 and A = 123C*C. For the nonlinear This brings us to our third fact. Although the

-, 4 -.,4..
=
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function f2 is a nonlinear function, it still does equation, eq. (6), and the nonlinear Schrddinger
mix the phases linearly, in that sums such as equation, eq. (7), one may easily show that it is

I, + 02r and ti + 0 do occur. impossible for these systems to satisfy (10).
As noted by Miles (5] and by Newell and However, there is one one-dimensional system

Redekopp [6], the two-soliton solution in higher which, with hindsight, does exhibit the effects of
dimensional systems becomes singular and (10), and that is the three-wave resonant inter-
breaks down whenever there exists a third value action [7, 11]. For this system, we have three
of C such that dispersion relations, one for each wave which

are (o.(k) ± c~k for n = 1, 2 and 3. If we let the
O(Cj) + ,(f) -(), (9) second envelope have the highest frequency

(which determines the signs via 1(021 = 1oWI + 10131),
where C and C2 are the "eigenvalues" for soliton then (10) becomes
#1 and soliton #2. By suitably choosing values
for 4io, one can remove this singular nature, and , + 3 = C2, (I la)
then the two-soliton solution takes on a three-
pointed star structure (10], two arms of which C + (Ib)
are the original two solitons, while the third arm
is a new (created) soliton, with a corresponding

as the condition for a nonlinear resonance. For"eigenvalue" of Cf-iC3. This star structure
oci nlye" )simplicity, we take the C's to be pure imaginary,occurs only when (9) is satisfied, and from (3) then (11) gives
and (4), we have that (9) is equivalent to

CI+ 2 = C3, (10a) II(CI-CZ)+ 73(cs-cz)=0. (12)

w(241) + (2;2) = oj(243). (10b) We remark that for to be physical [7], it must
lie in the upper half complex plane, and thus all

Note the similarity between (1) and (10). qi's must be positive. This restriction causes
Obviously, what has happened here is that in (12) to have a solution only if c, < c2 < c3 or
the region where this third arm is, (8a) has c3 < C2 < CI. In other words, for these nonlinear
degenerated into (8b), and since O(C3) exactly resonances to occur in the one-dimension form
satisfies (4) for the given w(k), the third arm can of the three-wave resonant interaction, the wave
therefore freely propagate as a third soliton. It with the middle group velocity must have the
could only freely propagate if this, complexified highest frequency. This is satisfied in the
phase relation was exactly satisfied. "Explosive Case" (7, 11] where this nonlinear

The above facts very strongly suggest that resonance gives an explosive singularity. It also
there can exist very strong nonlinear resonances is satisfied in the "Soliton Decay Case" (7, 111,
between solitons, resulting in the creation of where the nonlinear resonance corresponds to
new solitions and/or the decay of old solitons. both up-conversion and "soliton decay", but it
In fact, considering how closely that solitons do is not satisfied in the "Stimulated Back Scatter-
mock their linear counterparts, the existence of ing Case" [7, I1], and thus in this latter case, we
a soliton resonance as given by (10) should not now have a "reason" as to why nothing really
be at all surprising. One may easily say, that it remarkable occurs.
has not been recognized before, simply because Let us now turn our attention to an inter-
up until now, there has been no outstanding pretation of the experimental data on colliding
examples of (10). For the one-dimensional KdV spherical ion-acoustic solitons, which to lowest
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order satisfy [12] approximation simply requires the soliton am-
plitudes to be sufficiently large so that one may

8,q + + qeq + #9aIq =0, (13) consider this second term to be i perturbation.
r +Thus since the experimen'al collisioc. results [1)

did involve large amplitude solitons, we may use
where r is the radius of the spherical soliton, the form in (14), letting A decay as r -1 .

= r - ct, with c being the ion-acoustic speed, In terms of the geometry for the colliding
q = Sn/no, and = tc 2/c4 where wopi is the ion spherical solitons (fig. I of ref. 1), they will
plasma frequency. Except for the second term, collide along the perpendicular bisecting plane
(13) is just the KdV equation whose solution between the two sources. If we let rt(rz) be the
would be vector from source #1 (#2) to the maximum of

the first (second) spherical soliton, (see fig. 1)
q =Asech 2 ,, (14) then if we are to have condition (9) to be

satisfied, we must have
with A = 12 O12 and 0i = q(Xr- ct) where X =

I -iA. Either from energy considerations [13] or 171 + 712 = 173, (Ia)
by a perturbation theory (14], one may show
that the effect of the second term in (13) on the r, -711I +L(15b)
KdV soliton, (14), is in lowest order, to cause r, + 2  r3

the amplitude to slowly decay as r 41
3', and

therefore q as r - '3. In fact, experimental results satisfied in order for a nonlinear, resonance to
[15] indicate that an individual spherical soliton occur, where 'q3 will be the 71 value for the
will behave like this (A - r- 3 ) until the non- created third soliton and r3 will be a vector from
linear term is reduced in amplitude to about 2.5 its (apparent) source to its maximum. From the
times this second term, at which time, A drops geometry and the symmetry (fig. 1), r3 must lie
off faster than r-13, and the soliton presumably in the perpendicular bisecung plane. Thus r, (or
decays into linear dispersive waves. Con- r2) is the hypotenuse of a right triangle, with r3
sequently, we can consider (13) to possess ap- and 2d (d is the separation distance between the
proximate soliton solutions, where the soliton two sources) being the lengths of the other two
amplitude will decrease as r increases. And this sides. We note that (15b) also corresponds to

having the speed of the third soliton match the
speed of the point of intersection of the two
colliding solitons. In the experiment [1], 712 = I.

A2 = A, and r - r2. Then (15) does have a solu-
'r2 tion when

F3 So, = 211t, A 3 =4A,, (16a)
Source Oo ~

.N COS 013 = X3/X,, (16b)i -  2cm

Fig. I. The geometry for colliding spherical solitons. ri(r2) is where 61 is the angle between r, and r3. In the
the vector from source #1 (02) to the point of collision experiment at t = 4 j&s, A, = 0.2 and thus by
while r is the vector from the apparent source of the (16), A3 - 0.4 and 013 = 38. From the geometry,
created nonlinear object (soliton 03) to its crest. r, will be we would then expect to see the nonlinear
exactly at the intersection of r, and rz only as the resonance
point. resonance, and the resulting creation of a third
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solition, at r, = r 1.6 cm and r3 = 1.3 cm since Let us now estimate the required growth
d = 2.0 cm. Based on the experimental results length. When solitons #1 and #2 collide, there
(fig. 2 of ref. 1), we would expect this resonance will be additional nonlinearities in the plasma
to occur at or about t = 3 As. Their data does fluid equations, coming from their overlap.
not show what has happened at t = 3 As, but we These additional nonlinearities will drive the
do note that the new object is well formed at growth of the third soliton. Treating these over-
t = 4 A s. Of course, the above values of A are lapping terms as perturbations and ignoring the
for t = 4 As, whereas we find that the collision depletion of the two colliding solitons, one can
should occur around t = 3 As. Thus since A at show that the equation of motion for the third
t = 3 As will be larger than that at 4 A.s, and our soliton, along the perpendicular bisecting plane
values are only qualitative at this point. A more (where maximum growth would occur) is given
accurate result would require experimental data by
around t= 3 ps. Nevertheless, it seems very
likely that this nonlinear resonance is respon- 3u3+ u3a+ iu3 - (18)
sible for the creation of this new object, and r3 r3
that it indeed may be another form of a solition.

However, we also note that (16a) predicts an where now p . r3 - ct and
amplitude of 0.4, whereas their (1] fig. 2 shows
that the new object as having an amplitude of r-- xt(cos2 9,3 - xi sin2013)a,(U 2)
only about 0.2. This suggests that the new soli-
ton was not able to fully form while the collision + 4q4 sin'0, 3 J dg(a,u,), (19)
passed through the resonance region. To check
this, we will estimate the width of the resonance with
region, and compare it to the required growth
length of the third soliton. To estimate the width Ua = A, sech2[ip. + 'q(X,/COS 013 - l)r3], (20)
of the resonance region, we estimate the width
over which the sum of the phases of solitons #1 being the envelope of either colliding soliton
and #2 will match the phase of the third along the bisecting plane. Assuming u3 in (I) to
(created) soliton. If we let AO = Oi, + 42 - 43, be a soliton, and upon using the second con-
then this will vanish at the resonance, will also servation law, f'. u'dp, one obtains
have a vanishing first derivative (due to velocity
matching) at the resonance, but will have a A3 + 4A3u~rd(2 3), (21)
nonzero second derivative. Taking our variable Wr3 3r, _
to be ri, then we would have A0'(r,-ro)'/s
where s, is the resonance width and rio is the for the rate of growth of A3. We shall now
value of r3 at resonance. From (16) we then proceed to estimate the integral on the right-
have AO = 2 ,x,r,- X3x3r3 which upon taking hand side of (21). If we approximate um by a
the second derivative with respect to r3 gives soliton as in (14), letting u3 - A 3 sech2{s 3[A -

1A1(v3-v3o)]}, then at the resonance, u3 is
sr'= 2"'r/[2i,X, sin' 0131, (17) symmetric in p. Meanwhile, the first term of r

in (19) is antisymmetric with respect to p, so we
which for the above values and 13 = shall neglect it in (21). The second term in (19) is
1.74 x 10' cm' gives s,- 0.6 cm. Again, since positive definite, can therefore give a growth,
these values are based on the values at 4 A s, and has a maximum value of r.
they are only qualitatively accurate. (64/l5),q,A2x .
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This te -n will be one half of this maximum our current conclusions are that the phenomena
value at the center of the collision volume, so of nonlinear resonance of solitons do qualita-
we shall estimate r by taking r - fr. in (21). ti,"ly account for these experimental results,
Then since f'. u d4 - 241813, we find and that more accurate data on these collisions

may also give quite good quantitative
8A3 + - (64IS)qAi1. (22) agreement.
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Multi-shock solutions of random phase three-wave
Interactions
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Explicit solutions of die equation describing the space-tim interaction of three random phase wave packets
are presented. The solutions describe the collision and decay of previously known shock-like solutions.
Stability of the solutions to a perturbation in initial conditions is also analyzed. For thoe solutions which are
unstable, a closed form solution of the nonlinear evolution of the interaction is given.

I. INTRODUCTION The nonlinear interaction of a resonant triplet of un-

Wave-wave interactions play a central role in nonline- damped, positive energy waves is described in the ran-

ar plasma processes. The simplest such interaction is dom phase approximation by the equations'

that between three plasma waves. Depending on whether | 8a\ 1
the spectral widths of the interacting wave packets is 2. .pv, = -=(N, % 2  NN -1;,V,), (la)

taken to be small or large, this interaction may be des- a I

cribed in either the coherent or the random phase ap- (a + .V2 = L . (N, - NN - N2N3) (lb)
proximation. Solutions of the resulting equations are at ix V 1 ( - - )
obtained in standard texts by neglecting the spatial de- ( NN NN - 2 2 , (c
pendence of the wave packet amplitudes.' However, in- + V = 7 N -NVN

2  
+ N2N), (c)

clusion of the spatial dependence may lead to qualitative- (

ly different behavior. In recent years a rather thorough where the vi's are group velocities and the Ni's are ac-
understanding of the space-time behavior of the loss- tion densities (normalized to make the coupling coeffi-
less, coherent interaction in one spatial dimension has cient 1). The resonance conditions,
developed. 2 The space-time behavior of the random
phase interaction, on the other hand, is not well under- W2 W 41 +03 (2a)

stood. In this paper we describe multi-shock solutions k, k, + k,, (2b)
of the lossless, random phase three-wave equations in
time and one spatial dimension. The solutions are found have been assumed.

by transformation to a bilinear form of the equations, If the spatial derivatives in Eqs. (1) are neglected, the
analogous to the Hirota form of the Korteweg-deVries resulting ordinary differential equations can be solved
equation. The bilinear form of the equations also great- analytically. Note that if the N,'s are independent of x,
ly simplifies the stability analysis of our solutions. any set of amplitudes satisfying

Ohawa and Taniuti discovered shock-like traveling NIN, -N N 2 + NN =0 (3)
wave solutions to the random phase three-wave interac-
tion.4 They have further argued that such shocks due to Is an equilibrium solution. The solutions of the time-

the interaction of two Langmuir waves with an ion- only equations always tend to such an equilibrium.

acoustic wave should be observable in laboratory plas- If the Ni's in Eqs. (1) are assumed to be functions only
as.5 Assuming a plasma frequency of 10/sec, an of x -ut, where u is some given constant, a set of or-

electron thermal velocity of 108cm/sec, cold ions, and dinary differential equations is again obtained. The sol-
a Langmuir wave field strength of I V/cm, they describe ution for each N. is of the form
a possible interaction having a shock width of about 9
cm. Ohawa has presented numerical solutions showing N, = A, + B, tanh[y(x - u)]. (4)
how this shock can be formed by externally excited
waves.* These are the Ohawa - Taniuti solutions. For I x suf-

Our solutions describe collisions and decays of the ficiently large they approach an equilibrium solution,

Ohsawa-Tanutt shock waves. They bear a relation to satisfying Eq. (3) in the limit lxi - -. We will have more

the Ohaawa-Taniuti solutions analogous to the relation to say about these solutions In Se. M.

between n-soliton and single soliton solutions for other In this paper we obtain a set of closed form solutions

equations. The analogy Is deepened by our method of to Eqs. (1) having a nontrivial dependence on x and t.

derivation of the solutions using a technique of Estabrook Our solutions include the ohsawa-Taniuti solutions as
and Wahlquist7 usually associated with n-soliton solu- a special case. In Sec. 11 we transform to a bilinear
tions, and by our bilinear form of the equations. form of Eqs. (1). We find solutions of the resulting equa-

tion which are sums of exponentials, and we show how to

OPreeet addres: Physics and Astronomy Department. Univ- transform back to obtain solutions for the N,'s. In Sec.
ersity of Maryland, College Park, Md. 20742. I1 we describe the resulting solutions for the Nj's. Fin-
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N, =A+ Bjitanh(vt + A), (13a) Figure 1(a) shows N2 vsx at t =130, when two well-de-

= x + [(w, - w1)!(k 2 - k,), (13b) fined shocks are still visible. Figure I(b) shows N2 at
I = 10, after the two shocks have collided and formed a

= (k2 - k,)/2, (13c) single Oheawa-Taniuti shock. Note that the time re-
A =(d d versal of this solution gives a solution of Eqs. (1) with

U + (13d) the group velocities reversed. The time reversed solu-tion describes the decay of an Ohswa - Taniuti shock.

Bj =4 \ _.U) , (13e) The analysis for n=4 is similar. We now have sixX's determining possible shock fronts. Depending on
= 1 ln(wC,1wC,). (13f) the relative values of these X's we can now have up to

three shocks present simultaneously. Thus, we can have
These are shock-like solutions, with the shock front the decay of a single shock to three shocks, or the co-
centered at alescence of three shocks to form a single shock. The

- -I n = 4 solutions can also describe the scattering of two
X= - -k-i..1  (14) shocks off each other to form two different shocks.k2 -_k , k2-k I C2

Away from the shock front, one of the two exponentias IV. STABILITY OF THE SOLUTIONS
dominates, giving an equilibrium solution of the form of Now we determine under what conditions our solutions
Eq. (12) as xb- o. are sensitive to a small change in the initial conditions.

For n = 3 and n = 4 the solutions are new. These solu- Let the perturbed solution be
tions describe collisions, decays, and coalescence of Nj = Njo + 6N, (18)
Ohsawa-Taniuti shocks. First consider the n= 3 solu-
tions. We take (without loss of generality) k, <k <k s . with 6Nj <<Nj, initially. We want to know whether ON,
Then, for x sufficiently large and positive we may ne- remains much smaller than N,,. We again find it con-
glect the terms containing exp(hzx+ w1t). So, for x large venient to work with the bilinear form of the equations.
and positive, the n = 3 solution is well approximated by Corresponding to Eq. (18), we determine a 4, + 084 from
a single shock, with shock front centered at Eqs. (5). Since 8N<<.vI initially, 84 may be chosen so

that 00 << 00 initially. From Eqs. (7) it is clear that if

S W% -W2 t + 00 remains small, then ON remains small. Conversely,
h klr2 WC). (15) from Eqs. (7) it is clear that if 84 is growing exponen-

tiaiLy in time with a growth rate larger than that of 4;,
Similarly, for x large and negative the solution is well ON does not remain small. So, we can perform our sta-
approximated by an n = 2 solution with shock front at X, bility analysis directly on Eq. (6).
given by Eq. (14). If X,>>X,, there is an intermediate Substitute 4 = 00o+ 0 in Eq. (6), with 0, of the form
region between X, and X, where the solution is well ap- given by Eq. (9), and linearize in 80. The result is an
proximated by the equilibrium solution equation of the form

N, - v9Cg,/(2w2). (18) tPs, j k'a a'~jx+wi)Q
The solution then corresponds to two well separated a (x, 0)exp(k~z wt) , ' 84*(x, ) = 0,
shocks. What if XIL<<X2? That implies that the terms /
containing exp(khx + wt) are everywhere dominated by
one of the other two exponentials. These terms can be
ignored everywhere, giving an n = 2 solution determined (01 (b)
by C1 , w, k, and C., ws, k.

The time evolution of the n = 3 solutions is determined .4 4
by the sign of the expression

N- N2
- 2 (17)

k,-3k k3-k2"

When this expression is negative, the solution is a single
shock for I- - - and a double shock for t- -, corres-
ponding to decay of an Otsawa-Taniuti shock. When 2
(17) is positive, the reverse is true, giving coalescence "
of two Olsawa-TAniuti shocks to form a single such
shock. -s0 -40 0 -50 0 50

In Fig. 1, we show the time evolution of an x = 3 solu- X x
tion corresponding to the coalescence of two shocks. The FIG. 1. A n 3 s showing coalesoenoe of two Obsawa-
group velocities are v. 2 , V, a _ 0.3, with the solu- Taniuti shocks to form a single such shock. (a) The amplitude
tion given by the parameters k, 0 - 1, w a , k = 0.147, of N2 before coalescence t -- 130). (b) The amplitude after
w = 0.362, k3 = 0.296, w, * 0.326, and C, m C = C = 1. coalescence (t - 10).
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ally, in Sec. IV we consider the stability of the solutions N3 = vs[o,, + (v, + v 2)os, + vxvO4]/(204,). (7c)
to perturbations of the Initial amplitudes. We find that Equation (6) is bilinear. Each of its terms is quadratic

In those cases where a solution Is unstable, the per- In 0, which implies that Eq. (6) has solutions of the form
turbed solution is also included in our class of analytic

solutions. 0 = exp(kx + wt). (8)

Substituting this in Eq. (6), we find that it is a solution

I[. A BILINEAR FORM OF THE EQUATIONS for arbitrary w and k. Pursuing the analogy with the

In order to obtain solutions of Eqs. (1) we transform Hirota form of the Korteweg-deVries equation, we try

to an equivalent set of bilinear equations, analogous to solutions which are sums of exponentials

the Hirota form of the Korteweg-deVries equation. To find
this transformation we have used a method of Estabrook 4, Ci exp(kix+ wt). (9)
and Wahlquist,7 as further developed by Corones,' Kaup,'
and Newell. 10 Much of the laborious algebra involved in Substituting in Eq. (6), we find that this is a solution If
this method was done on the MC computer at MIT, using for all ,j,
MACSYMA." The derivation of the transformation Is
outlined in the appendix. 2 LL f .. + /. + W, A =vv

To simplify our bookkeeping somewhat, we make use k, k, k .Vk ) -k, V3) V k -,

of the fact that either v, or v. must be greater than or (10)
less than the other two velocities. Since the equations

are symmetric with respect to the interchange of N, and For a sum of n exponentials, this gives n(n - 1)/2 con-

N., and are also symmetric with respect to a reflection sistency conditions on the 2x unknowns (Ws and k's).

Two of the unknowns may be fixed by the choice of the
about x = 0, we may without Loss of generality ake v, space and time normalization. We conclude that the
>v,, v3 > v .  consistency conditions can be satisfied if n 4 4. The con-

We are still free to work In a reference frame moving sistency condition is, in effect, a nonlinear dispersion
at any fixed velocity. The transformation is consider- relation.
ably simplified if we work in a reference frame where

the group velocity of the intermediate velocity wave van- We are interested only in those solutions for which

ishes. In the following we let a correspond to the sub- the N,'s given by Eqs. (7) are all positive. If v, = 0, we

script of the wave having negtive group velocity (thus must require wj > 0, k, < 0, and Iw/kj < Iv21, Iv21 for

a= I or a= 2). each j. If v. = 0, we must have wi> 0 and 1w,/k, >v, for

Let the quantity ip(x, t) satisfy the equations kj < 0 or k,/kjt >v, for k, > 0.

0.a - (a, 2  aNg - a)e', (5a) III. THE SOLUTIONS

4, = eo, (5b) Substituting the exponential solutions for 4 Pq. (9)] in-
to Eqs. (7) we obtain solutions for the N,,with

NJ !a P-".,d,C exp(.x +w)
8-f[v~,Na)+~a,4Vsx')dx, (c) D.,w.C. exp(k.x +wot)'

a,' 2[v,(v-vJ)(v, -v)], (5d) where

a, = 2(v, -u 5 )/[v3(V-,V)(v1 -v2)2], (Se) dl. : v V , + vk,)(w. + v,k.), (lib)
Vs -,as

and
V, -Va.- 2(V -- V ,)/ Vs(VI, -- U)2(V3 -V )]. (5f) d . V, - V3 .+ V Lk )(w =+ v,k.) ,(11C)

Equations (5) are consistent with Eqs. (1) in the sense d5,, = (w. + vk,,)( .+ v .) . (1ld)
that 0,,- 0g., = 0. From Eqs. (5) and (1) we find that 4, Here, the w's and k's must be chosen subject to the non-

satisfies the equation linear dispersion relations (Eq. (10)] and subject to the
20,(#,,, + (VO + V00st, + v~v3$, ]- 20, condition that each of the Nj's be greater than or equal

to zero. Necessary and sufficient conditons on the w's

- 2(v, + v#)0#,,, -vv,v.(*,,, + 0,) - 0. (6) and k's in order that the N,'s be positive have been given

at the end of the previous section.
Given any solution &(z, t) satisfying Eq. (6), we obtain a
solution of Eqs. (1) by using Eqs. (5). From Eqs. (5) we For f = 1, Eq. (la) reduces to

find NJ = v5Cd,/(2w) • (12)

N, vt(v, - II) f + (v,+ V.)4., + v.Z.,. (7a) These are the time-only steady-state solutions satisfying
VS-V2 2*# Eq. (3).

N2 ,(1 - (V1 V.)#,,+ v(,v (7b) For x= 2 we recover the Ohsawa-Tanlutl solutions.
{V, - V.,) (20,) (7 Equation (Ila) then gives
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N, =Aj + B, tanh(u + g), (1a) Figure 1(a) shows N vsx at t=-130, when two well-de-

= x + [(w - w,)i(k2 - k,)], (13b) fined shocks are still visible. Figure 1 (b) shows V2 at
t = 10, after the two shocks have collided and formed a

= (k2 - k,)/2 , (13c) single Ohsawa-Tanluti shock. Note that the time re-

versal of this solution gives a solution of Eqs. (1) with
A, = .4L, + _-2) (13d) the group velocities reversed. The time reversed solu-tion describes the decay of an Ohsawa - Taniuti shock.

B, . a__ (13e) The analysis for n= 4 is similar. We now have six4\w2 w~lX's determining possible shock fronts. Depending on

;L- In(WC 2 /wC). (13f) the relative values of these X's we can now have up to
three shocks present simultaneously. Thus, we can have

These are shock-like solutions, with the shock front the decay of a single shock to three shocks, or the co-
centered at alescence of three shocks to form a single shock. The

- I - ("' (14 n = 4 solutions can also describe the scattering of two
X -- (14) shocks off each other to form two different shocks.k - k k w C,/ IV"T B L T F H O U I N

Away from the shock front, one of the two exponentials IV. STABILITY OF THE SOLUTIONS
dominates, giving an equilibrium solution of the form of Now we determine under what conditions our solutions
Eq. (12) as ix- . are sensitive to a small change in the initial conditions.

For x = 3 and x - 4 the solutions are new. These solu- Let the perturbed solution be

tions describe collisions, decays, and coalescence of Nj = No + 8Nj, (18)
Ohnawa-Tanluti shocks. First consider the n=3 solu-
tions. We take (without loss of generality) k1 <k,<k,. with &Nj <<Njo initially. We want to know whether ON,
Then, for x sufficiently large and positive we may ne- remains much smaller than N,. We again find it con-

glect the terms containing erp(kxx+ wt). So, for x large venient to work with the bilinear form of the equations.

and positive, the n - 3 solution is well approximated by Corresponding to Eq. (18), we determine a c o0 from

a single shock, with shock front centered at Eqs. (5). Since 8N<N o initially, 0 may be chosen so
that 00 << initially. From Eqs. (7) it is clear that if

1. / w2 remains small, then 6N remains small. Conversely,X2 + -t I n t . (15) from Eqs. (7) it is clear that if 80 is growing exponen-
k3 k2  k3 -ka WC31 tially in time with a growth rate larger than that of 0,

Similarly, for x large and negative the solution is well 8N does not remain small. So, we can perform our sta-
approximated by an n= 2 solution with shock front at X, bility analysis directly on Eq. (6).
given by Eq. (14). If X,)>X, there is an intermediate Substitute ' = 0 o+ 80 in Eq. (6), with 0'o of the form
region between X, and X, where the solution Is well ap- given by Eq. (9), and linearize in do. The result is an
proximated by the equilibrium solution equation of the form

N , = v C d,,/(2w ). (16) : f p ( wk )exp(k x + it) Q. D a,

The solution then corresponds to two well separated n . ax

shocks. What if X<"X,? That implies that the terms (19)
containing exp(khx + w) are everywhere dominated by
one of the other two exponentials. These terms can be
ignored everywhere, giving an n a 2 solution determined M

by C, wt, k, and C, w, k,.

The time evolution of the x = 3 solutions is determined .4 4
by the sign of the expression

W2- W1 - W2 NJ

k,- k  k,-k, (17) .

When this expression Is negative, the solution is a single
shock for t- -- and a double shock for t- -, corres-
ponding to decay of an Obsawa-Tanluti shock. When .2
(17) is positive, the reverse Is true, giving coalescence 2

of two Ohiawa- Taniuti shocks to form a single such
shock. -80 40 0 -so o so

tn Fig. 1, we show the time evolution of an i a 3 solu- X X

tion corresponding to the coalescence of two shocks. The
the I FIG. 1. An x - 3 solution showing coalescence of two ohsawa-group velocities are v. • 0, v s  V - 0.d, wiht sou- Tasluti shocks to form a single such shock. (a) The amplitude

tion given by the parameters k, a - 1, w, = 1, ks a 0.147, of N before coalescence (t -130). (b) The amplitude after
- 0.362, , a 0.296, w, 0.326, and C,-C , 1. coalesoence (t=10).
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where P and Q,. are monomials, and the subscript m = Q(N 1 ,N2 ,N1 )4 (Alb)
rs'oh the different terms in the linearized equation. Here 0 is an auxiliary vector function of x and t, and P

Laplace transform in t and X, and Q are matrix fu:,ctions of the N,'a. The conditionI,

Zj P.(,(, k ). (p - k, k- k,) for consistency of Eqs. (Ala) and (Alib) is

J-1 Ott-los 0, (A2)
X (k- kjp - W,) . . (20) or

Invoking the Independence of 8 at different points we 1,-QX + PQ - QP = 0. (A3)
nay remove the sum over j. Defining p, = p - w, and
ki= k -k, and assuming 6;(;,, A) 0, we finally obtain If P and Q are given functions of the N,'s, (A3) isa par-

tial differential equation (in general, nonlinear) for the
.P.(u,, k,)Q3 ,,kk): 0. (21) N1's. Wewould like to choose the matrixfunctions Pand

Q so that Eq. (A3) is the same as Eq. (1).
This Is exactly the same as the consistency condition, For those equations which are exactly soluble by an in-
Eq. (10). When a closed form n-shock solution is un- verse scattering transform, an embedding of the form
stable to a perturbation of the initial conditions, the non- (Al) exists with a free parameter. Equations (Al) then
linear evolution of the instability is given by another correspond to the associated eigenvalue problem, with
closed form n-shock solution. the free parameter corresponding to the eigenvalue. For

As an example of an instability, we recall the n = 3 Burgers' equation, the embedding leads to an equivalent

solutions corresponding to decay of a single shock. This linear equation. Neither of these is the case for Eqs.
describesan instability of the Ohsawa-Taniuti solution. (1). Nevertheless, an embedding of Eqs. (1) does exist,

and it leads to the solutions described in this paper.
V. CONCLUSION This suggests to us that the Estabrook-Wahlquist meth-

The shock-like solutions of Eqs. (1) discovered by od may be more generally applicable than its original
Ohsawa and Taniuti have been found to be a special case derivation would suggest.
of a more general class of multi-shock solutions. These With Eq. (A3) as our starting point, we apply the chain
multi-shock solutions describe decay and collisions of the rule
Ohawa-Taniuti shocks. Any instability of such a multi-
shock solution is itself given by a multishock solution. P j = P , N,, + P.Na, + P x N, (A4a)

The numerical work of Ohawa, showing that the sin- Q. = QN1 N + Q + Qv, Ns., (A4b)

gie shock solutions evolve from a variety of initial con- and use Eq. (1) to substitute for NA. The resulting equa-
ditions, suggest that more generally the muLti-shock tion contains terms with N,,. Since the initial value of
solutions should be a common feature in those systems the NA/s is arbitrary, we demand that the coefficient of
where instabilities saturate due to mode coupling of ran- each Nj, vanish. We obtain
dom phase waves. This contrasts with coherent three-
wave interactions, which commonly lead to multi-solton V iPf = Q, j 1,2,3. (A5)
solutions. Taking cross derivatives of these equations, we find
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APPENDIX J1

The bilinear form of Eqs. (1), presented In Sec. B, was Q = - v~g,(N)+ W, (Alb)
obtained using a method of Estabrook and Wahlquist,' as
further developed by Corones,8 Kaup,' and Newell.t ° Or- where g,, W, and Z are matrices to be determined. Sub-
iginally developed in connection with equations having an stituting Eqs. (AS) back into the consistency equation, we
inverse scattering transform, the method has been shown determine that g7 a 0, so that gj must be of the form
to also give the Cole-Hoap transformation for Burgers'
equation.$ This motivated its application to Eqs. (1. , NX, + V, la9)

The basic idea of the Wahiquist- Estabtok method as where we have absorbed the possible constant term into

applied to Eqs. (1) is to embed the nonlinear Eqs. (1) as Wand 2. Again substituting back Into the consistency
the consistecy condition for a pair of Linear equations, equation, we find that each V must commute with all

other matrices. So the VI's can be set to zero without
-,P P(NN,Nt,1)4 , (Ala) changing the structure of the matrix algebra.
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We have concluded that P and Q must be of the form Having a closed Lie algebra, we now easily find a

t X3 x 3 matrix representation,P= EX:Nj+Z, (A10a)

1-t 0 0 0
W= 00 0

u ,j jN+ W. (A10b) 02 0

Substitute these expressions back into the consistency2 0 0 0]

equation, setting the coefficient of each term iin the re- =-3"L) 0 0]
suiting polynomial in the N,'s to zero, to obtain a set of ata,(t' -V' ) 0 0
commutation relations. To simplify the expression of
these relations we define 1

Y,-X, r.-X, Y3.x. (All) 2 0 - ,

Let 2 0

JAB)aAB -BA. rta ,V 3(v, -v,)[va,(v, -v,)]' 0[A ]-A -SA.2 0'=T -VA, 0
In terms of the Y,'s our commutation relations are 2 0 2za4

(V, -. ,)Y,, Y',I= '
(Vv -v I

1)IY ,y -3(va ) 0

IV VL v t0 0 vA s
f[ j W)= v 1[z, V] [W, z=o. (A12.)

This gives us the desired matrices P and Q.
The commutator of Y= with Z or W is not determined. Now we have embedded Eqs. (1) as the consistency
We note that in order to recover Eqs. (1) from Eqs. (Al) condition for a set of six linear equations in three vari-
and (A1O)- (A12), we must also use the fact that ables. Eliminating two of the variables in terms of the
Iva -vLiNL - Iva -VSLN is a conserved quantity. third, we obtain Eqs. (5). Using Eqs. (1) to eliminate the

We now cidse the Lie algebra, consistent with the Ja-. Nj's from Eqs. (5), we obtain Eq. (6).
cobi identity

[A, [B, Cjl+ [B, (C,A]l + [C, ,B]]=0. tR. Davidson, Methods in Nonlinear Plasma Theory (Ac-

This step involves much laworious algebra. We did the demic, New York, 1972); V. N. Tsytovtch, Nonlinear 4ffects
algebra on the MIT MC computer, using MACSYMA." in Plasma (Ptenum, New York, 1970).
Our algorithm was to define new elements of the Lie 2 A review of this work is contained in D. Kaup, A. Reilman,
algebra equal to the unknown commutators, evaluating and A. Bern, Rev. Mod. Phys. 61, 275 (1979); and In A. Ret-

man. Rev. Mod. Phys. 51, 311 (1979).all Jacobi Identities ".t 4ch step, continuing to add new 3R. Hirota, Phys. Rev. Lett. 27, 1192 (1971); see also G. B.
elements until the algebra collapsed back down and then Whitham, Linear and Nonlinear Waves (Wiley, New York,
closed. The result is 1974).4Y. Ohsawa and T. Tanluti, J. Phys. Soo. Jpn. 35, 907 (1973).

[,Z] ,,Z-aW, Y. Obsawa and T. Tantuti, J. Phys. Soc. Jpo. 36, 313 (1974).
'Y. Ohsawa, J. Phys. Soo. Jpn. 87, 1129 (1974).
,,11. D. Wahquist and F. B. Estabrook, J. Math. Phys. 16, 1

V VO Y2 ) (1975); H. D. Wahiquist and F. B. Estabrook, J. Math. Phys.
17, 1293 (1976).

where a, has been defined in Eqs. (5). Note that the al- 8J. Corones, J. Math. Phys. 17, 756 (1976); J. Math. Phys. 18,
gorithm used gave us the largest Lie algebra consistent 163 (1977).

wD. Kaup, MIT Plasma Research Report, PRR 79/6 (1979).with Eqs. (A12). We are, therefore, assured that there '0 A. Nwell, Proc. R. Soc, London 365, 283 (1979).
can be no free parameter in the closure, of the sort "A. Reiman, in Proceedings of the Seconmd MACSYMA User's
which appears when an inverse scattering transform ex- Conference (Masachusetts Instute of Teclology, Cam-
ists. bridge, Mass.) p. 385; Comput. Math. (to be publisbed).
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THE SOLUTION OF THE GENERAL INITIAL VALUE PROBLEM FOR THE FULL
THREE DIMENSIONAL THREE-WAVE RESONANT INTERACTIONt

D.J. Kaup

Dept. of Physics
Clarkson College of Technology

Potsdam, NY 13676

The general initial value problem for the full three-dimensional
three-wave resonant interaction is solved by inverse scattering.
The existence and uniqueness of the solution is established when
all waves have a positive energy.

I. INTRODUCTION

This is the fourth article in a series of articles on the three-dimensional three-
wave resonant interaction (3D3WRI), and with it, we complete the theoretical
development by presenting the method of solution for the g@neral initial value
problem. This series was initiated shortly after Cornille developed an alternate
set of integral equations for sqlving the 3D3WRI. The first set was originally
proposed by Zakharov and Shabat'. What was significant about Cornille's results
was that qe had started from the scattering problem developed by Ablowitz and
Haberman,j which could be readily cast into characteristic coordinates, which then
created considerable simplifications in the required analysis. Using his results
and also characteristic coordinates, we4 were then able to develop a method for
solving a special class of initial value problems, called "separable initial
value problems." These separable problems only require the three initial profiles
to be nooverlapping, which is frequently the physical situation. In this first
article,' It was not necessary to consider or use inverse scattering. We simply
applied Cornill's results, in characteristic coordinates, to solving the
separable initial value problem.

Now, whenever one has a set of integral (inverse scattering) equations, one can
usually work backwards to the required scattering problem, and in the process
determine the necessary integral dispersion relations, and thereby what analytical
properties are required. Once one knows this, one can restart from the required
scattering problem, and since one now knows what the analytical properties must
be, one can rapidly move forwgrd to solve both the direct and inverse scattering
problem. Our initial results* on this were presented at the conference on
"Mathematical Methods and Applications of Scattering Theory" at Catholic Un'versity,
21-25 May, 1979, wherein we were able to derive and prove almost all of the
ansatzs required by Cornflle. In the process, it also became necessary to solve
a simpler two-dimensional scattering problem with which one could then map each
separable initial profile into a set of scattering data. Then it was shown that
from these three sets of initial scattering data, one could then construct the
three sets of scattering data required for reconstruction of the final profiles.
Thus it was now possible to go directly from initial profiles to fnal profiles.

In a third article,6 these results were further expanded on and made more rigorous,
in addition to several new results. Among these were the proofs of the existence
and uniqueness of the solution for this simpler two-dimensional scattering
tResearch supported in part by the Office of Naval Research, Contract No.
N00014-76-C-0867 and NSF Grant No. MCS 7903498.
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problem, of the general solution of the three-dimensional direct and inverse scat-
tering problems for separable initial value problems, of the existence and unique-
ness of the solution of the three-dimensional inverse scattering equations, closed
form solutions for the scattering data when the initial profiles, as functions of
the characteristic coordinates, are separable, a physical interpretation for the
scattering data, and an infinity of conserved quantities, of which onlIy thetfirst
two are local in form. Furthermore, many analogies between the 3D3I an the
one-dimensional three-wave resonant interaction/ (ID3WRI) were noted.

Although these results were quite comprehensive, they still could not be used to
address the general initial value problem, wherein thg initial profiles could be
overlapping (nonseparable). And furthermore, the above results were based on the
assumption that a solution existed globay, in that all profiles remained
integrable and square integrable for all time. This was analogous to assuming
that a solution existed, and then using that assumption to prove that the solution
existed. Being a circular argument, one could thus only show consistency.
However, the tools required in these previous results were exactly those required
for the more general solution, and these results also allowed one to isolate
precisely those items and methods to be required in the more general solution,
which is finally presented in this article.

Of course, it is well1 recognized that the Ablowitz-Haberman scattering poblem, 3

and Cornill s results' were not the first. Earlier, Zakharov and Shabate vad
obtaind an L and a B operator for the 3D3WRI, and based on this, Zakharov0 and
others have obtained closed form solutionq for the 3D3WRI. However, it just
simply happened that the Ablowitz-Haberman- form could be most conveniently cast
into characteristic coordinate form, and we cannot overemphasize the fact that
this is itself allowed considerable simplification in the required analysis.
Then when we move on to the general initial value problent erein, we find that
we are now working directly with the Zakharov-Shabat form, and we are now
solving this scattering problem, both the direct and the inverse scattering parts.
And, armed with the experience from the previous simpler results, the solution
can be rapidly and easily obtained.

In Section II, we treat the direct scattering problem for the general initial
value problem, assuming only that the initial profiles are integrable and square-
integrable. Here we find that there are eight sets of fundamental solutions
(three fundamental solutions per set) for a total of 24 different solutions. Any
one of these eight fundamental sets is complete, in that any solution to the
scattering problem can be expanded in terms of the three fundamental solutions
in a given set. The analytical properties of each of these fundamental solutions
are obtained, reflection and transmission coefficients are defined, and each trans-
mission coefficient is shown to possess a unique inverse. As a consequence of
this latter property, one can show that no bound states exist and therefo e no
soliton solutions exist for the 3D3WRI, when the profiles are integrable.9

In Section III, we solve the inverse scattering problem, noting first that there
is a very large number of possible forms to choose from. Since our principle
interest here is simply to show that the solution of the general initial value
problem of the 3D3WRI does exist and is unique, we shall simply arbitrarily choose
one form to work with, ignoring for now the other possible forms. We then obtain
the necessarily linear dispersion relations, prove that the transformation
kernels exist, obtain the inverse scattering (integral) equations, and prove that
the solution of these inverse scattering equations exists and is unique in all
cases, except for the explosive case. In this explosive case, at least one of
the three waves must be a negative energy wave, and It is known that the singular
solutions can then evolve from nonsingular solutions.0o , Thus, we naturally do
expect a certain lack of uniqueness and existence of the solution for this
explosive case. And for this reason, we do not attempt to determine just exactly
what may be sufficient conditions on the initial data for an explosive case
solution to exist and be unique.
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In Section IV, we give some concludipg remarks, comparing these inverse scattering
equations against other known forms,9?o and noting their inei;uvalences. Also,
we note how these fundamental solutions are related to those presented earlier,'

6

and how one may determine the final profiles directly from initial overlapping
data.

An important point not to be underemphasized here, is simply that two and three
dimensional inverse scattering problems are indeed doable. Unknown to most of us,
several simple two-dimensional systems had already been solved by L.P. Nizn1k

l O

including the wave Tquation and the two-component Dirac equation. In fact,
Niznik and Tarasovl have also obtained some results related to the same problem
as we shall treat here. However, in their short note, they were not able to
give any proofs or derivations, and we also note the bounds they require on the
potentials to be more stringent than ours. However, we should also point out
that these two different investigations of basically the same problem further
differ in two other aspects. First is the different viewpoints involved. Niznik
Is interested in solving the inverse scattering problem, and formally he did So.
However, for us, we must go further and apply the inverse scattering procedure
to the 303WRI. Second, our derivations and proofs here shall differ from
Niznik's, in that we shall approach (2.1) as being a physical scattering problem,
and shall derive the inverse scattering equations from the analytical properties
of the fundamental solutions of (2.1).

And finally, as further proof that two or three-dimensional inverse scattering
is indeed doable, we simply mention that Professor Manakov1 2 has just recently
solved the inverse scattering for the time dependent Schr6dinger equation, which
is also reported in these same proceedings.

II. THE DIRECT SCATTERING PROBLEM

We start with the scattering problem in characteristic coordinates,4 which is

akt=yqj*k (2.7a)

a i~k * yiqj~i ,(2.1b)

where I, J, and k are cyclic in (2.1) ? is the ith component of the solution,
yi carries the sign of the ith coupling onstant (yj - +1), and qi is the
envelope (profiles) of the ith wave. The integrability-condition for the six
equations contained in (2.1) are the three equations

aiq i - yia~q , (2.2)

wjh t, J, and k still cyclic. In (2.1) and (2.2), a1 - 3/axf where x4 is the
Ir characteristic coordinate. These coordinates are related to ordinary space-

time coordinates via

ai I ff-3t " vi~ e  (2.3a)

a iX4 - 0 , (2.3b)

where I is the group velocity of the ith envelope, qt, and X4 Is simply a fourth
coordinate required to make the set (Xlxji2XXd) complete. Of course, the

envelopes in(2.2) may depend on .4 , but n.e differentiations with respect to
X4 never occur, we then simply solve (2.2) at any fixed value of X4. Naturally,
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we assume the three operators (a7,a 2 , 3 ) to be linear independent, otherwise (2.2)
would degenerate into the lD3WRI.'

In References 5 and 6, the global solutions of (2.1) were analyzed, assuming the
profiles, ql, q , and q1 to be suitable integrable and square integrable. Here,
we shall seek to solve ?2.l) at a fixed value of t, not globally. From (2.3),
we have that the characteristic coordinates are related to time via

Xi + Xj + Xk t . (2.4)

Thus if we constrain t, only two of the characteristic coordinates remain
independent. We shall choose the two independent coordinates to be Xi and Xk
(for a given choice of i, j, k) and if we constrain t = 0, then

xj(tO) = -Xi - Xk - (2.5)

In order to constrain (2.1) to t = 0, we first must eliminate all at's from (2.1)
by taking the proper linear combinations of the six equations in (2.1). From
(2.1) and (2.3), one can obtain, at t 0 0,

ak*i Yk qJ*k - yjq kij (2.6a)

(ak-piJ = ykqi~k - yiq**i (2.6b)

ai*k 4 yiqjoi - yjq*j (2.6c)

where = v v (2.7a)

ai = ( V- ).4 , (2.7b)

are simply the partial derivatives with respect to xk and x- when is constrained
to be on the surface xi 

+ x + Xk = 0. We remark that (2.6) and (2.7) and all
further results will no longer be valid for i, J, and k cyclic. Thus we could

easily replace i, j, and k by 1, 2, and 3 at this point. However, simply to
emphasize that we may choose i, j, and k to be any combination of 1, 2, and 3, we
shall continue to use the i, j, k notation.

A general solution of (2.6) is

i(xlxk) ' gi(xi) * / (yjqkjykq k)(Xi u)du , (2.8a)
x 
k

9j(xitxk) * gj(Xi+Xk) + I (Yiq*,i-Ykq ik)(Xk +xi-vv)dv , (2.8b)

xk

*k(XiXk) * gk(Xk) + 1" (yjqlej-yiqji)(Wxk)dW 
(2.8c)

Xk

where gi, g, and gg are arbitrary functions. Since (2.6) is linear, we may
replace eac gn(u) y a plane wave or zero. There are three ways of doing 1this
for each choice of the limits on the Integrals In (2.8). We define the ith
fundamental solution, * , of (2.8) by
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i~xi

gi(xi )
= e , (2.9a)

gj = gk 0 ,(2.gb)

the jth fundamental solution, iJ, by

gi ' gk 3 0 , (2.10a)

-iC(xi+x k )
gi (xi 4xk ) - e (2.10b)

and the kth fundamental solution, Pk, by

gi - gj = 0 (2.11a)

iCxk
gk(xk) - e (2.11b)

At this point we shall pause and describe how (2.6) is a scattering problem, by
demonstrating that the solution (2.8) for the iLh fundamental solution, (2.9),
contains an incident wave, a transmitted wave, and two scattered waves. In Figure
1, we represent the three'initial separated profiles by circles, where'the arrows
on the circles indicate the direction in which the profiles are initially moving.
Then by (2.8a) and (2.9), the ,li component propagates along the vertical
characteristics In a downward direction as indicated. For values of xk above all

profiles, lii= eicXi, and is simply an incident plane wave. (Note that the wave

vector of i i is in the Xi direction, while i i propagates in the Xk directio
As one moves down the characteristics, when they intersect the potentials, 1i-
is modified by the interaction, and finally emerges at the bottom as the

"transmitted wave" with its profile no longer eIcxf, except where the charate ris-
tics do not intersect the profiles. Meanwhile, due to the interaction of p
with the profiles, (2.8b) shows that some , j will be created, and is shown in
Figure 1 as emerging from the lower right of the interaction region, and it then
propagates along its own characteristics. Similarly, (2.8c) shows that olk
created to the left, propagating along the horizonal characteristics. These
latter two waves are "reflected waves". Naturally, their prof'les will be
determined by the three potentials. And, we shall show how, by knowing certain
profiles of these reflected waves, one may reconstruct the potentials.

We remark at this ooint that there are 8 different ways in which one could define
these fundamental solutions, depending on whether one chooses +- or -- as ooe of
the limits on each of the integrals in (2.8). Each possible choice will give
another equivalent set of lundamental solutions. Since each set contains three
fundamental solutions, we have a total of 24 possible solutions to consider. For
the moment, we shall only consider the set given explicitly by the limits chosen
in (2.8). First, we shall analyze the analytical properties of the jth
fundamental solution of this set, showing that it is analytic in the lower half
c-plane (LHP).

We define

P n(Xlxk) =*J(xi~xk)e 'C(x i+ )Xk) (n-il,k) (2.12a)

and

...- wa-~ - - ..... - m-.......Im
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k

,q£

i kI

Fig. 1 - Graphics representation of the Oi solution of (2.8). The incident wave

( i i) is at the top, the transmitted wave ('ii) at the bottom, and the

two reflected waves ('ip and i k) are at the left and right.

pi(xi.xk) = yj I e-i(w-Xk) qkPjX(lw)dw
Xk

Y - ~ y  w ) ( i ce i ( w x k ) - i ¢u -x )

- f 0 dwq* (x1,w)e f du e i qiP (u,w) , (2.12b)
Xk

Pk(xlxk) yj r" due qjPJ(ulxk)
XI
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-- i (u-xi) - i (w-xk)

YiYj I' duqj(u,xk)e / e C qkPj(uw)dw . (2.12c)
Xi Xk

Then simple substitution of (2.8b) and (2.8c) into (2.8a) qives

i = p1  dwe q(xi,w) I due qPi(uw) (2.13a)

Xk Xi

and similarly

P= + YiYk f due qj(u, dwe qtP.(uw) (2.13b)
Xi  Xk

Let us now assume that the profiles at t = 0 may be bounded as follows. Assume
that there exists a function, V(u), such that at t = 0 and for the initial
profiles,

Iq l(xi~xk)l V(xi xk)V(Xk) (2.14a)

lqj(xi'xk)l V(xi)V(Xk) ,(2.14b)

Jqk(xi 'xk)I 1 V(xi)V(Xl+xk)  ,(2.14c)

with V(u) being both integrable and square integrable so that

SV(u) + V (u)]du <

Then for 4 in the LHP, it follows from the Neumann series solution of (2.13) that

(Pi V(X)I o I duV(u) I dvV2(v) Ipl(uV)I , ".l5a)
Xi Xk

1Pki 1V(xk)lo r duV2 (u) I dvV(v) Pk(u,v)l , (2.15b)
Xl Xk

where

10 = I( 2a2) , (2.16a)

a 2 - f v2(u)du , 
(2.16b)

we now also define

I V(u)du , (2.16c)

V - _ _ __ _
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and I (z) is the modified Bessel function of order zero. Inserting (2.12) into
(2.15, -tor in the LHP, we obtain

Pil U2(xk)IoV(Xl) r du f dwIP (u,w)lV(u+w)[v 2(u)+ 2V
2 (w)] (2.17a)

xi xi

IPk1 <U2(xi)IoV(xk) f du f dwIP (uw)IV(u+w)EV
2(w)+u2V

2(u)] , (2.17b)

Xi  Xk

as bounds on Pi and Pk" In (2.17a), the function U2 is defined by

U2 (u) = V2 2(v)dv , (2.18a)
u

and we shall later also require the function

U1 (u) - f V(v)dv (2.18b)
U

We shall now use (2.17) to find a bound on P From (2.8b) and (2.12a). we have

IPj-1 1 2(l+c2)loU2(xk)V(Xl4Xk) f dw f dulP (u'w)IV(u+w)

Xk xi+Xk-w

(V (u)+V (w)] . (2.19)

It now becomes convenient to consider Pj(xiXk) as a function of x+ and
Thus, we define 

Xk

ij(xglxk ) = Pj(xixk) ,(2.20a)

where

Xt a Xi + k (2.20b)

Then

Pj- I cL2(l+m2)IoU2(xk)V(xt) / du P dwIPi(wu)IV(u)V 2(w)+V 2(u-w)]. (2.21)I X, --

the Neumann series solution of which gives

1PJ-l f !.O(xzl )U(xt)U2 (xk)exp'SQ2U2(x)' (2.22)

where

S - 24 (1+e2 )I o . 2.32a 2 (2.23)

Now, inserting (2.20) and (2.22) into (2.17) allows us to obtain the bounds

C2
1 2 r i )U 2 I)e 2 (2. 24a)
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2

Pk 1 al282 V(Xk)U2 (xi)e 2  (2.24b)

In a similar manner, one may show that the derivative of p' e with
respect to C is also bounded for C in the LHP, but not on the real axis. Thus

we then have that *Jeil(Xi+Xk) is an analytic function of C for ; in the LHP

when (2.14) is satisfied. For lJd id (X i+x k) to be analytic on the real axis, one
also needs

r luMVu) < -,(2.25)

as a sufficient condition.

We shall now discuss in general all 24 solutions mentioned earlier. Each one of
these solutions may be represented in the following graphic manner, which we
shall illustrate with the above solution. For convenience, we shall assume at
t - 0, that all initial profiles are on compact support, and thus there exists
a circle in the xixk-plane which circumscribes all three initiAl profiles. This
region of the xixk-plane shall be graphically represented by 0 . Consider now.
the above solution for *ii. From the bounds given by (2.24a), we observe that

is only nonzero for Xi within the range of this circumscribed 
circle, and for "

xk within the circle, or below it. This part of the solution may be graphically
represented by

n 
I

where the circle represents where the potentials (initi 1 profiles) are located,
and the three vertical lines outline the region where is in general nonzero.
Similarly from (2.24b), we see that we may represent *'by

and from (2.22), we may represent ,' by

In the above, one notes that we have included a bold heavy straiqht line
opposite the triplet of lines. This line will be used to represent the "incident

wave," which for this solution, is the e part of i¢ J Now, one should

further note that each component of ip represented above has different charac-
teristic lines. Thus without any confusion, we may superimpose the above oraphic
representations, obtaining

-i _____ _ _
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as a graphic rjpresentation of the above solution for 01 . Similarly, the
solution for , defined by (2.9), differs from the above only in the positioning
of the bold line, and thus

graphically represents . solution i. (Compare with Figure 1.) Likewise,

graphically represents the solution p

in addition to the above three fundamental solutions, one may define 21 additional
fundamental solutions (not independent). They differ from the above in the
positioning of the triple lines, and also occur in sets of three. Inside each
set, each solution differs from the other two only in the positioning of the bold
(incident) line. The graphical representation of all 24 of these fundamental
solutions is given in Fig. 2. In Fig. 2, and from now on, we have expanded our
notation for these fundamental solutions by adding another superscript to 'P, and
thus the solution is designated by Onr (n = 1,2,...,8 and r - ij, or k). The
first superscript simply denotes which triplet of fundamental solutions, and the
second one refers to which choice of the g's, given by (2.9) - (2.11), are made.
Oge should note that p6r is the set of fundamental solutions given by (2.8), and
J is that fundamental solution whose analytical properties we explicitly worked

out. Note that in the upper right corner of each graphic representation, we have
placed either a U, R, or L. The U indicates that the solution is analytic in the
upper half plane (UHP), the L indicates analytic in the LHP, and the R indicates
that the sglution in general only exists for c real. As we have already seen,
note that * J is indicated to be analytic in the LHP.

We shall now proceed to define a scattering matrix for each of the eight triplets
of fundamental solutions represented in Fig. 2. We define a set of p's by

1=r(;;Xi,9kV±) x x nr( c,X)e , (2.26a)

lim nr(;x,xk) - nr A(xi+xk)

XiXk 0 P( )e 
(.26b)

nr 0+ dx nr(¢, 'eXXk
*~k (4;xi--'Xk) fft N Pk+ A) (2.260

where in (2.26), n - 1,2,...,8 and r - I, J, or k. Note that as defined, for any

-- V - m m m -m
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2r

r3 r- U

L U

~por: 
:7

A U

o7r:

'Ig. 2 - Graphic representations of all twenty-four fundamental solutions. The
bold line indicates the direction of the incident wave, the circle, the
region of the initial profiles. The sets of three para::el lines
indicate the nonzero regions of any reflected wave or the shadow region
of the transmitted wave. The symbol to the left designates the set of
fundamental solutions, while the corresponding value or r is given across
the top. The symbol in the upper right-hand corner of each graph
indicates that the solution is analytic in the upper half plane (U).
lower half plane (L), or is only bounded along the real axis (R).

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
-- 4 - - - - -- - -- -
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fixed n and r, two of the p's will be zero, and one will be the identity,

I - 2w6(4-x). For example, from Fig. 2, we see that for 1 P, H , elcXi

for - j. 0 as -k--, and 0 as x -11XkXk ~ hs ehv
P- I and P- 0 .P-

From (2.6), one can derive a conservation law, which is

at(Ykk - Yj*j) - 3k (Yioi** - yjP o. (2.27)

where p and j Is any two solutions of (2.6). If we integrate (2.27) over the
entire xixk-plane, using (2.26) to determine the contributions from the boundaries
(at infinity), one obtains

mr nst mr nst _ mr nst mr nst,Yk Lpk+Pk+ k .k --j+Pj+ .Pk )

,mr nst mr nst) . . (2.28)yitpi+Pi+ - Oi.Pi. ( .8

We have introduced a convenient condensed operator notation in (2.28), which we
shall use frequently hereafter. In this notation, a product such as ap simply

means f p, ( , = *( ',c), I = 2w6(c-c'), etc.
2W

One consequence of (2.28) is that any triplet of fundamental solutions shown in
Fig. 2 is a complete set of functions, by Which any solutian of (2.6) may be
expanded. As an example, we will expand *or in terms of *4r. In general we
would have (in the condensed notation)

06r alp 21 + bpj + c#2k (2.29)

To determine the matrices a, b, and c, we proceed as follows, referring to Fig. 2.

fixed, only 2k . eicxi is nonzero, while 6r . 6r .exi.
As Xk .with xk e 2m k s e
Thus we have c - Pk-. Similarly considering xi  -- and Xi - Xk W1 gives

,6r 6r 21 6r 2j 6r.2k
0 i-O + Pj2 + Pk-0 (2.30a)

Likewise, we expand 02r in terms of ,6r. obtaining

,2r 2r.61 2r6j +.2r 6k (2.30b)
Pi+* + 

(2.30bN
Tn order for these st4tes to be cgmplete, we must be able to insert (2.30b) into
(2.30a), and obtain *or - Z(6I)*os. This does indeed occur due to (2.28) andS

these states are therefore complete. The proof is simple straightforward algebra
except for one point. And that is that (2.28) for n - 1,2,3, or 4 and for m - n +n+,r~ns ns

4, gives that p is related to either Pr+ or pr-; Thus to prove the above,
one needs the n 2 and m - 6 forms of (2.28), as well as the n - 6 - m forms.

Lastly, we need to point out that the asymptotic form of *nr as 1i -,. is
exactly as one would expect, when C is constrained to the region where *nr is
bounded, as indicated by the letters in Figure 2. For example, directly from
(2.8) and (2.10), one can verify that
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6je '(Xi+Xk) 6j + o(1) (2.31)r r

as 1l . a in the LHP. Furthermore, one finds this result to be independent of
n, and that in general

ni " i j +, e ar + 0 23a

0 n e -,.iXk Si + o(0) ,(2.32b)
r r

nk ei Xk k + 00) (2.32c)
r r

as il - in the appropriate half-plane or on the real axis.

II. THE INVERSE SCATTERING PROBLEM

As emphasized earlier, there is an almost infinite number of sets of inverse
scattering equations, most of them possibly inequivalent, in that one cannot (at
least easilyj transform one set into another. This large number was noted first
by Cornille.1 The manner in which one set differs from another is in the set of
reflection coefficients chosen to be used. As an analogy, in one dimensional
scattering one may invert about either the right or the left, with each choice
giving an inequivalent Inverse scattering equation, since each equation uses a
different reflection coefficient. The situation here is analogous, except that
we now have three dimensions and a greatly expanded number of possible choices.

A general formula for deriving inverse scattering equations, and the one that I
have almost always used is the following. First, one analyzes the analytical
properties of the fundamental solutions of the scattering equations, define
reflection coefficients, and locate all identities that they satisfy. This is
the direct scattering problem and was done here in Section II for the 303WRI.
Second, one determines what integral dispersion relations that a chosen independent
set of these fundamental solutions satisfy. Once one has this, one actually at
this point has a solution to the inverse scattering problem, because from these
equations, one could reconstruct the chosen set of fundamental solutions and from
the asymptotic form of these solutions as kI c ", one can recover the potentials.
However, existence proofs and other things are easier done using integral equa-
tions, so we then usually transform these dispersion relations into integral
equations. These are actually equivalent. One is just the linear Fourier
transform of the other.

So, we then have to do two additional steps. The third step is to find a set of
"transformation kernals" for the fundamental solutions. Usually, consideration
of the analytical properties of the fundamental solutions allows one to easily
guess a proper form, and a proof of their existence directly follows. Then
finally, the fourth step consists of simply of substituting the expressions for
the fundamental solutions, in terms of the transformation kernals, into the
linear dispersion relations, and upon taking a Fourier transform, one obtains
the linear integral (inverse scattering) equations.

So, proceeding according to the above formula, we next select a set of independent
fundamental solutions, and proceed to determine their linear dispersion relations.
Arbitrarily, we shall select the set 06r to work with. Even though we have
selected a set to work with, here one still needs a little ingenuity to find the
proper expressions, due to the large number of states present. First, let's note
that to derive these dispersion relations, one basically is only using Cauchy's
theorem. Thus one must be able to extend (or at least a part of each) these

_!
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fundamental solutions into the UHP and the LHP. This is best illustrated by
example. t6i exists in general 29ly for real C. We note that S and *3i are
both analytic in the UHP. Bt *o has the incident beam (the bold line in Fig.
2) orientated the same as j# Thus if we expand *51 in terms of the set o6r,
we find

0 61 , 1P5i -P 5i1P6j (3.1a)

We want is form because *51 cag be extended into the UHP. For the LHP, we

expand * in terms of the set * robtaining

*61 171 7i 6k (3.1b)

For the *6j solution, since it is already analytic in the LHP, we only need a
form for extendig a part of it into the UHP. Inspection of Fig. 2 shows that
we want to use * J, which gives

6j . lj lj 6k lij61 (3.1c)1 " * ' k "i+3

And to get *6k into the LHP, we will use

6k 3k 3k 61 3k 6j
P - pi+* . (3.1d)

Now, simply applying Cauchy's theorem to each fundamental solution, using the
asymptotic forms given in (2.32), we obtain the dispersion relations

61 -icxi i. G(xi) 5i*6J + (xt)oi.pk 6k (3.2a)

6j i ¢(xl~xk)*r r - r k+ r 3.c6j e ';X 6k J -G [lj 6k ^lj,61i3.c
r r G-Xi-Xk ) [ k+ 'Pr  + Pi+*r ,,(.c

where the singular operators G(u) and (u) are defined by (for e 0+ )

G(u:, -) , (3.3a)

~e-i;'u
S(u;€,7') - t (3.3b)

This completes the second step.

For the third step, we seek to fipd a set of transformation kernals. Consideration
of the analytical properties of Oor simply suggests

61t "l~xi i ecsU61~ (3.4a)

*r e 6 r + J"Oe r (s;Xl'xk)ds + fO e s L Sr (S;xi'xk)ds (3.4a)

*6e i Sl f"'i k) eiSf e c; (sxl,Xk)dS (3.4b)r r 0 rJ +  i" x

06k e- " i xk . ak + I'0 e urs U ks;xi x )d s  (34c

where the U's and the L's are the transformation kernals. We must now prove that

I.- --.. ' I -___ II
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the assumed U's and L's do exist. To do this, we require (3.4) to satisfy (2.6).
This then gives us the series of equations

u i(s-) - 2 U6 is S , (3.5)
k

61 61 u6 i
k Ui *YkqjUk " Yjqk U (3.6a)

(ak-ai+as)Ui .u6 i - .6q* (3.6b)

as)U6 i  Yiqj i _ Yjq j , (3.6c)

L61(s-0) - U i(s-5 ) y (3.7a)

j i k] j kj '
kk

61 6i

61 61 6

a-L i yiqkLi ,(3.9b)

(+as)L i 61 yiqj0 -" yjqi j 6i (3.9c)

L'J(s-) - o - L6J(s=-) , (3.1)

L6 (s 1O )  (3.1 a)

~ki k jk

Lkj(s-o) - Y 1jq (3.11b)

j (3.10)61y *LL (3.12a)

( k-as)L Ykq k "Jk

6j L 6j - yiqlL j  (3.12b)

kU k(S-) 0 - U k(s--) (3.13)

U6k q (3.1 4a)
U1 (S-0) =-f

U k(s-0) -y kqtj (3.14b)

6k 6k u6k

kN a. s)Ul Ykqjt ik - k U (3.15a)
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6k Ulk _- yjq*U~k (3.15Sb)

a6k YiqjU Y q*Uk . (3.15Sc)
aluk i ii

The above equations, (3.5) - (3.15) op ly insure that (3.4) satisfies (2.6). In
order that (3.4) give the solution ;pr and not another set, we must also require

U 6r( 0 a. O L 6r (X) *(3.1 6a)

j Xk'- i OL (xkx) ,(. b

U6r( 6r( 31b
Uk 6(x 1_) - 0 aL~ 6ri . (3.16c)

One may now turn (3.6), (3.9), (3.12), and (3.15) into integral equations, usina
(3.5), (3.7), (3.8), (3.10), (3.11), (3.13), (3.14), and (3.16) for the boundary4 conditions. This gives

U1 . f'fyjq 6~i -,qU 611(s.x'k+~d 31a

UXkvd 6i,_11ki 1,qU6 d (3.i7b)

Ss 'k'~ k i ~v45,v~sxk+v-s~d 31

1 6if6

f- l fVq U V - Yj q*'6 11 v~lsvX)dv ,(3.17c)

61 . L 1 q*L 61 I(s.x +'dv 31a
Li f -(Yq k j k txIkv~ 31

k~1  'x~ - f (YkqlU~ k k x

f s [YiL 61  yi* 61,Vx-~vx sYd (3.1 8b)

L 1 -f (y~qjL" - T 61 )d (3.18c)
k ~ ~ 1 i(v;xl+v-s-xk~d

6j s 1 j 6j

LiXk +j ryq*L~ y q L i(~ 1 svx)dv (3.19c)

L6j . -(if 6k _, 6])v (3.19b)U1  0Y k3(xj k i+ k f(jqi-Uk Y3Uv~ xsk.v

U6k . * + -Yj U k 6 (3.20a)Ui Yrkq(xi'sx+s) + fy q k .kqjUk](v; Xs+vksvd

6k .'[Y 6kUk i*f -iq6' 6k (.2ck 0[vq y~ 1 1(s;xi+v'xk~d 2c
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Note that (3.17) and (3.18) is a coupled set of equations. By techniques almost
identical to those used in Section I, one may show that the Neumann series
solutions of the above exist, and therefore the kernals defined in (3.4) do exist.

We are now ready to obtain the inverse scattering equations. But first, we shall
remark on the time dependence of the scattering data. From (2.1), (2.3), and
(2.26), one obtains

nr 0 ,nr (3.21a)
ati+ 0 k+ ,

nr
(at+iX) 0 jn( ,X) a 0 . (3.21b)

From (3.2lb), one finds

= p _+(O; ,X)e i . (3.21c)

As a consequence of (3.21c), we may now replace the term on the left-hand side
of (3.21c) wherever it occurs, with the right-hand side, provided we interpret all
p's as those at t 0 0. This will be a minor simplification in the following
inverse scattering equations, but more important, it allows us to immediately
write them in a form valid for all t. To obtain these equations, we simply sub-
stitute (3.4) into (3.2), and upon taking a Fourier transform, one obtains

U61 s)+ak F7i .(.+ ,. F71 ) 6k (dv-0 , (3.22a)Lrt(s) rk+ i k k+(xi.sxk+v)Ur

L 61i(s) + 05F 5i isxj-v)L (v)dv = 0 , (3.22b)

L(s) + FFl' +s xk) FlJ(Xj-sx)
Lr() + r k+(XX 0 + r i+(x-~i

77 )U6k~v+ dv F kJ(Xj-Sxk+ (v)0

+ F (xj-s,xi+v)U 1 (v) 0 , (3.22c)

i+ r6

Fi+(xj s,xi-v)L (v)l

6k ( 13k jF3k
Ur + 6rF1+(Xk+Sxi) r rJ(Xk+Sxj)

-d 31(Xr+s -X+v)U(1

+ ,xk sxi-v)L61 (v) 0 ,(3.22d)

L F k ~~ sxjv)L jv

where d e d icu nr . ikv

-" n" u - r(O;c.X)e (3.23)
P_+ - a.

In (3.22), we have six different kernals (the F's); however, only three are
independent. From the m - 7 and n - 3 form of (2.28), one finds

_ _ _ _ _ _ _ _
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71 3k±-
k+ YiYkPi+ 7 k(3.24a)

from the m a 5 and n = 1 form, one finds

. Yjiti+ (3.24b)

and from the m - 1 and n = 3 form we have

lj 3kt 3kt - . = 0 (3.24c)Pi+PI+ " yiyj~j- - Yiykpk+

Thus from (3.23) and (3.24) we have

F7  u v) , 3k*
YiykFi+ (vIu) , (3.25a)

Fk(u,v) =- , + Yiy. Ids*i+ , (3.2%)

3k kFk+\*v~uJ + i f 'dsF k (us)F I. j*(vs)(32c

leaving only F3k ,F 1  and Flj+ as independent.
1+' Fk+' Fi+asidpne.

A proof of the existence and uniqueness for the solution (3.22) is fairly easy to
do, except in the explosive case (y. = -Y1. ,y.= + 1), which shall not handle here.
For a proof, we need only'to show tIlat (3.22) has no homogeneous solutions. Using
the identities in (3.25), it is fairly easy to show that the homogeneous solution
of (3.22) must satisfy

" F- 6i1s 2 L61 i~s
I ds Iy.iU (S)l 2 + sL 6 2

0 I r r

- U 6k(S)r2 yjIL6j(s)l 2 0 (3.26)

Now, only in the explosive case will all the y's be the same sign. In this case
(3.26) tells us nothing important. The only other case is when one of the y's
differs in sign from the other two. Let this y be designated as y.. Then (2.26)
shows that only the trivial zero solution exists. Therefore for y1 . = -Yk,
the solution of (3.22) will be unique. (This is no real restription, since we
may initially designate any one of the three waves to be the itn wave.) The
reader should note that Niznik's statement in Ref. 11 that these systems are
always solvable is valid in general only for the nonexplosive cases, unless further
restrictions are placed on the scattering data. This is because we have a
counterexample, in that for the explosive case, the profiles c(n initially
satisfy (2.14), but can become singular as it evolves in time. '9

This concludes this solution of the general initial value problem for the 3O3WRI.
From the arbitrary initial data at t z 0, satisfying (2.14), one solves (2.6) for

the P's defined in (2.26), of which one really only needs p 3k and i for

this solution. Then one constructs the F's as in (3.23), solves the linear
integral equations, (3.22), with the potentials being recovered from Eqs. (3.7),
(3.11), and (3.14).

We remark that the F's may be obtained directly from (2.6). For example, define

f IJ(u; ) 10 d e- e u j(r;xi'xk) , (3.27)

;x9X

S_ _ _ _ _ _ _ _ _
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which is a solution of (2.6) satisfying the initial condition

l-e-T r (;7v-L,rv+L) - 6 r6(u-v) .(3.28)

Then from (2.26), we have

Fi+(u,v) = Ti*(u;v,xk +-) , (3.29a)

Flj(u,v) . j*(u;xi * + .,v) (3.29b)
3k

Similarly, one could also obtain Fi+(u,v).

IV. CONCLUDING REMARKS

In an earlier work, 6 we had obtained the inverse scattering solution for separable
initial data assuming global properties on the solution. The inverse scattering
equations presented here, (3.22), are not equivalent to those in Ref. 6 (Eq. (45)].
The truth of this statement shall become clear shortly. First, we want to relate
the fundamental solutions used here with those of Ref. 6. We do this by expandinq
the on fundamental solutions of Ref. 6 [defined by Eq. (7)], in terms of *6r.
Thus we have

0 n. an6i + an 6j + an6k (4.1)

To determine the coefficients, we proceed as follows. From Fig. 2, we have
t = 0, as x * + -, xi fixed [and therefore by (2.4), Xi " --- , that only o, is
nonzero. T us in this limit, if we consider the itn co ponent of (4.1) we find

n;,, a n (c,X)e ixx i (4.2)

From q . (25) and (AS) of Ref. 6, we can evaluate the left-hand side of (4.2),
obtaining

n n (4.3a)
ai Okl

where the u's were defined in Ref. 6. Similarly, one also finds

a n , U (4.3b)n n

ak lk (4.3c)

giving

n n 
1 *61 + n 6j + nk6k (4.4)

k kj ik*D

Of course, the u's are unknown when we do the general initial value problem, so
we now seek to see how well we may determine them. To do this, we consider (4.4)
in the limits opposite to those used to obtain (4.3). Specifically, we consider
n(xi,+,-), * and v,(x).-and. Then we have

*i i k(xk ,- ,+ ).

n n 61 n 6j +n 6k

P =i " Okpi- + Ukjpt - +Otkt -  (4.5a)

V
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n n 6i n 6j n 6k

j ki j+ + kjPj + k+ p (4.5b)

n = n 61 + n 6j n 6k (4.5c)
ijk ki k- kjPk- + uikPk-

Using the identities satisfied by the u's, Eqs. (Ag) - (A15) of Ref. 6, we may
solve for the p's in terms of the u's and v's. This gives

Pi- = I kit i k i (4.6a)

6 1 .= i I (4.6b)
Pj+ Ukivk ij

6i = kt k k (4.6c)
Pk- =  Yiyk jivikUjk '

6j jt j -it (4.6d)i- Yiyj~kj~ij~kJ ,

6j jt j (4 .e)
0j+ ukjvij ,

6j ; -k (4.6f)
0k- vik

6k k k i(4.6gPi- V "ik Vjiuji (46g

k R k (4.6h)OJ+ "ii ,

k- ikujkk 
(4.61)

As was the convention in Ref. 6 a wavy line over any quantity indicates that it
is that quantity for the final profiles (t - + .), while those without wavy lines

over them are those for the distant past ("asymptotic initial," t - - -) profiles.
Note that (4.6f) and (4.6h) gives us directly a v and a ;. If we now make use of
some of the many identities in (2.28), from (4.6) one can then show that

li -k (4.7a)Pj+ Q k

3k -k (4.?b)
Pi+ vij '

06j ;j(4. 7c)
k- vik

and
lJ j (4.8a)

Ui+ i ,

31 i (4.8b)
Pk vjk

6k k (4.8c)
P j.+ V 1J '

Eq. (4.7) contains exactly those ;'s required for constructing the E's (Eq. (A23)

-- -- -- -- -
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of Ref. 6] needed for constructing the final profiles (Eqs. (A22) and (A24) of
Ref. 6). Therefore, we now have that given any general initial value problem,
by evaluating the p's listed in (4.7), we may in general go directly to the
final profiles by using the results in Ref. 6. We say in general simply because
we are not necessarily always insured that the p's in (4.7) will satisfy those
conditions sufficient for (A22) of Ref. 6 to possess a solution. (Those
sufficient conditions depended on certain global properties.) One may likewise
do the same with (4.8) in determining what the "asymptotic initial" envelopes
were, except that we cannot use (A22) of Ref. 6 directly. This is because the
permutation of i, j, and k on the v's in (4.8) is in the wrong order for (A22)
of Ref. 6. However, by finding the linear dispersion relations for the N solu-
tions (defined in Appendix A of Ref. 6) as in (A19) of Ref. 6, one may proceed
to obtain inverse scattering equations which would involve the v's of these
permutations.

Let's now determine the p's required by (3.22) in terms of the u's and v's.
Again, from the identities in (2.28) and with (4.6), one finds

lj = j (4.9a)
Pi+ 'Jki
lij j j kt (4.9b)

Ok+ = "jYk kjuijvij

3k .k (4.9c)
Pi+ V. 0 (

3k k- k -jtP. Y Y Pk V jVik ,(4.9d)

5i Vjt (4.9e)

7i -kt (4.9f)
Pk+= YiYkVji

In (4.9), we simply wish to point out that the scattering data required for (3.22),
when viewed from the point of view of Ref. 6, are a mixture." Tbey contain one
reflection coefficient for the asymptotic initial kth envelope, vii, one

reflection coefficient for the final jth envelope, vKi, and a conbination of the

transmission coefficients for the initial ith and ktA envelopes with the

reflection coefficient of the ith initial envelope. (p 3k is not independent.)

One result of uIng this type of an admixture of the scattering data for inverse
scattering, is that the separable solutions of (3.22) will not be the same as the
separable sulutions of (A22) in Ref. 6. [By separable solu1Ton, we mean the
solution that results when the kernals of the inverse scattering equations are
separable.] The separable solutions of (A22) of Ref. 6 are briefly discussed in
Appendix B of Ref. 6. We simply note that assuming the F's to separate is
equivalent to assuming that the reflection coefficients also separate. Thus the

separable solutions of Ref. 6 require vik, vki, and vki to separate. But as one

may verify by reconstructing the fundamental solutions from this separable
scattering data, the transmission coefficients and the other reflection
coefficients do not in general separate. Thus the p's listed in (4.9) would not
in general separate although Ak etc. did. Likewise, if we require the p's -
in (4.9) to separate, we can obtain separable solutions obtained from (3.22) then

vk etc. would not separate. Thus separable solutions obtained from (3.22) will

not be equivalent to those separable solutions obtained from (A22) of Ref. 6.
Mtewise, any other inverse scattering equations which are based on a set of
reflection coefficients different from the above two sets would have still another
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inequivalent set of separable solutions.

What this suggests is that each differe set of inverse scattering equations
[Cornille calculated the number to be 31' different sets] produces one subset
of separable solutions from a very large class of closed form solutions of the
3D3WRI. How large this class of closed form solutions really is, remains to be
seen.
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The lump solutions and the Bicklund transformation for the three-
dimensional three-wave resonant Interaction
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A Bicklund transformation is found for the three-dimensional three-wave resonant interaction,
and from it, N-lump exact solutions may be constructed. The one-lump solution is analyzed in
detail, and it is shown that it describes such effects as pulse decay, upconversion, and explosive
instabilities, all in three dimensions.

PACS numbers: 02.30.Jr, 03.40.Kf

I. INTRODUCTION is how one can define a lump solution. And as one could

Since the general initial value problem of the three-di- construct N-soliton solutions, so can one also construct N-
mensional three-wave resonant interaction (3D3WRI) has lump solutions. Furthermore, N-soliton solutions can be
recently been completed,'one may now turn his attention to constructed from a Bicklund transformation, and as we
see how one may make use of this method of solution. Obvi- shall show here, the same can be done for N-lump solutions.
ously, one would seek first to exploit the simplest classes of These N-lump solutions are important for another rea-
solutions. These are called "lump" solutions, the first ones of son too. Ni.nik has shown that any set of potentials (enve-
which were found by Zakharov2 and later by Craik.3 They lope profiles) can be approximated to any given accuracy by
were then rediscovered by Cornille4 from his integral equa- a suitably chosen N-lump solution.' Thus, many physical
tions, and were also noted to arise from the many and varied situations can therefore be reasonably well approximated by
inverse scattering transforms associated with the these N-lump solutions, at least for a finite time. The Wtter
3D3WRI. " Following a sugsestion by Professor Corones,' condition is necessary, because Nifnik's proof is only valid
it was soon discovered that the complicated machinery re- for a given instant of time, and in general one would not
quired for the general solution of this problem was not need- expect such an approximation to remain valid for all time.
ed if one was willing to only generate new solutions. Of What we shall do in this paper is to derive the Backlund
course, to solve an initial value problem you still needed this transformation for the 3D3WRI, showing how one may c6n-

machinery. But if one would only seek to investigate Special struct an N-lump solution, and shall briefly discuss these

solutions, then an old observation made by Professor Cor- solutions. Then we shall use the one-lump solution to ana-
ones,6 would allow one to almost immediately construct the lyze the collision of envelopes in the positive and negative
Bficklund transformation for these equations, from which energy cases. What we shall find here are solutions illustrat-
these special lump solutions could be quickly generated. ing pulse decay, upconversion, and explosive singularities.

These lump solutions in three dimensions are not analo- These effects in three dimensions are shown to be both analo.
gous to the soliton solutions from one-dimensional inverse gous and different from the corresponding effects in one-
scattering theories, although they are similar in some re- dimensional solution, .
spects. First of all, when the envelope profiles are required to
be integrable, and square integrable in three dimensions, the II. THE BACKLUND TRANSFORMATION
scattering data for the 3D3WRI has been shown to consist of As discussed by Corones,' one way to find a Bicklund
only a continous spectrum, with no bound states allowed. " transformation is to simply assume that one exists of the
On the other hand, soliton solutions in one-dimensional in- form
verse scattering theories always correspond to a pure bound q' =f(qQ,,), (2.1)
state ,ectrum. with the continous spectrum being distinctly where q is a known solution of the nonlinear system, q' is to
absent. Furthermore, solitons always have a relation be- be a new solution, Q is the pseudopotetial (s), and A is the
tween amplitude and width, so that only one is independent, eigenvalue (if one is present). One now simply requires q' to
and with a distinct shape or profile. But lump solutions have be a solution of the nonlinear system, which then can deter-
no such relation between amplitude and widths, and the pro- mine what the functional form forfmst be.
file shape can be quite arbitrary. Thus in three dimensions,Wht the fn ci al o wor twe hve uchmor fredo in hapng nd ormn$ umpWell, the same basic idea also works for the 3D3WRI,
we have much more freedom in shaping and forming lump as we shall now illustrate. The nonlinear equations are
solutions than was possible with one-dimensional soliton
solutions. c(

However, there are also similarities. The one-dimen- W" = xq;q, (2.2)
sional oliton solutions always have a closed form solution, where ij, k are cyclic and equal to (1,2,3), q, is the i' enve-
since the kernels in the one-dimensional inverse scattering
equations were separable. I ne same is true for these lump lope, , is the jib charactertic coordinate, defined by
solutions in three dimensions, in that the kernels are also C1 = - a , (2.3a)
separable, again allowing closed form solutions. In fact, this
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where , is the group velocity for the &' envelope. The r, in where 8 is some real constant, and
(2.2) carries the sign of the coupling constants, and we as-
sume the y's to be real and scaled to unity in magnitude. G,(u) = du. (2.11)

We use the characteristic coordinates because of the
resulting simplifications in the analysis. From (2.3) one can In (2.10), we may, without loss of generality, assume

obtain the transformation from characteristic coordinates to 6= ± 1, since (2.5) is linear in 4,, and only the ratio of

space-time coordinates. Of course, by (2.3a), we only have 0'*bk/D is significant. Furthermore, if we note that (2.2) and

three characteristic coordinates, and to complete the trans- (2.5) are invariant under the change of the signs of all the q's

formation, we must supplement (2.3a) with and ,'s, we may also choose 6 = + 1, which we shall do.

(A, + ViY)X 4 - 0, (2.1b) tnThen from (2.9) and (2.10), we have the one-lump solu.(a, v+V)X = 0 (23b) tion as being

which defines a fourth coordinate. A solution of (2.3) for x
and t as functions ofX, and X, is q, = ggk/D, (2.12a)

3 where
X - v, ! + n 4, (2.4a) 3

D= I + Xr.G,. (2.12b)

t - - X, (2.4b) Note hat in (2.12), g, is only a finction ofX,, and similarly
iml for G,.

where n is a unit vector parallel to (v, - v2) x (v, - v3 ), and as Given the above solution, one may proceed to obtain a
such, makes an equal angle with all three group velocities two-lump solution. Denoting the one-lump Din (2.12) by D,,
(i.e., - vcn -= v2.n = V3"M). Note that when we keep any two then the general solution of (2.5) is now
characteristic coordinates fixed, and let t--* ± w, then the
free characteristic coordinate approaches :F ac. 4', = hiX) + gF/D, (2.13)

As far as (2.2) is concerned X4 is like a dummy coordi- where
nate, since no differentials with respect to it occur. Thus, in
solving (2.2), we may keep X fixed, then let X. take on an- F = - - yf gHu) du, (2.14)
other value, solve (2.2) again, etc. Thus, since X4 is a dummy - ',

coordinate, we shall ignore it from now on. with q being some constant. The solution of (2.7) is then
The scattering problem for (2.2) is D = D, - F- F/D,, (2.15)

ak + k (2.5a) where

a,*k = ,qjo,, (2.5b) DA = l + 3r,H,(x+), (2.16a)

where in (2.5), ,1, k are still cyclic, giving six equations alto- i-

gether. Equation (2.5) has three conservation laws, which are
8

1 (Yk 0, O) - 8k (r, ir ,), (2.6) H ju) h h, du. (2.16b)

and a consequence of these, is that a function D exists such This gives the two-lump solution as being
that qj = ;/(DD - F *F), (2.17a)

a3D - y, O4 '4. (2.7) where
To find a Bicklund transformation, we now assume

that we can find three functions, a4,q2, and 43, where q =Dhggk +hgkF+ hgF' +Dhh "h,. (2.17b)

S-4,*,qD), (2.8) Although we do not now have a general proof, it seems fairly
obvious that by this procedure one may generate an arbitrary

and such that these functions will then satisfy (2.2). Using N-lump solution.
(2.2), (2.5), and (2.7), it is rather simple to show that such can Let us now consider the simple one-lump solution given
be done, and that by (2.11). The simplest form is when one of the q's is zero. If

4j,- qj + OO ',/D (2.9) we chooseg , -0, then

is one such transformation, provided D is real. With (2.9), q, = g-(9 2)9X 3 )/D (2,X3), (2.18a)
one may now generate new solutions of (2.2) from old solu- q2= = 0, (2.1 8b)
tions. Given any solution of (2.2), one constructs 4, from
(2.5) and D from (2.7). Then these functions inserted into (2.9) which is a trivial solution of (2.2). It ha only one nonze-will give a new solution. envelope, and thus corresponds to a freely propagating enve-

In particular, we may start with q =0, in which case lope without any interactions. And in the absence of anywe obtain a one-lump solution. The solution of(2.w) and (2.7) interactions, it travels along its characteristic, X, withoutis then a any change (i.e., it is independent ofX1j. It's profile and shapeis determined by two independent functions g2 and g3, one
0 1 , (2. lOa) for each free dimension. (Actually, g2 and g3 will also depend

3 on X, but as stated before, we shall ignore this dependence
D - + y ) (2.10b) since it can be understood that all functions and paiameters
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can always depend onX4 .) Note that these functionsarecom- We define the action in thefh envelope A, by
pletely arbitrary; thus there is a large amount of freedom in - .

shaping this pulse. However, the shape is not totally arbi- Aj(t)}J dxJ dy dzq;qj. (3.1)
trary, because the functional dependence ofq, onX2 andX3 is - -

required to be of the form of a simple product, except for the In order to evaluate the above integral, we transform to char.

terms in the denominator. acteristic coordinates. Directly from (2.4) for t constant, one

When all the g's are nonzero in general, we have nontri- can show that
vial interactions and solutions with the general solution be- dx dy dz = J dXn dX 2 dX 4

ing given by (2.12). To obtain the asymptotic initial profiles
(the profies as t--- - ao) according to (2.4b), we take the = Jdx2 dX

3 dX4

limit of the corresponding characteristic coordinate going to = J dx3 dx dx (3.2)
+ .Thus, to get the initial profile for g, which we shall where

designatebyQ,, weletXr-. + c in(2.12Jfor(i,j,k) = (3,1,2)giving, J - 01v - V )X (v2 - vA-l (3.3)

Q, = g3 r 3)g2(r2)/[ I + Y2G2( 2) + r 30(x 3 )]. (2.19a) Thus (3. 1) becomes

Similarly, the other initial profiles are Aj(t) " d 4a,(,t), (3.4)
Q, =gL;' 1 )g3( y)/[1 + r,G,ti',) + r3G 3 ),], (2.19b)-

=g 2-elr)gUr) 1V[ 1 + yG(r 1) + r3G2 3)] (2.-19b) where the "reduced action" aj is defined byQ3 = k2*(,X2)g1(, 1)/[11 + ri G I(r 1) + 72 G2(X2)] - (2.19C)

Again, one should note that we have a large degree of flexi- a(x 4,t) = f dX-j- dXkq;q,,- (3.5)
bility in shaping any one profile in (2.19). However, after the
first one is shaped, say Q3, then g, and g2 have been specified, In practice, it is impossible to evaluate (3.5) when
and only g 3 is left arbitrary. Now, we are only free to specify X = - X - Xk" However, if instead we define
"one-half," of another profile. So for the general one-lump r- r-
solution, we may only shape "one and one-half" profiles ar- a,(X,,) =fJ dxJ_ dXk q;q, (3.6)

bitraruily, subject to the product form in (2.19). Even with this
restriction, one can still obtain useful information concern- and since as t-- ± o, q becomes independent ofx, and wehave
ing the nature of the interactions in the 3D3WRI, as we shall h
illustrate later. ai(xmt- +e)= aj(x4,xj-F co) , (3.7)

One can similarly obtain the final profiles, designated thus allowing us to evaluate the initial and final reduced
by 4, by taking the limit oft-. + oc in (2.12). This gives actions from aj. In fact, from (2.11) and (2.12), we have the

Sg /l + ysf, + y, 1 + r'Ok), (2.20) closed form solution
where -= Grk r I.PJ' (3.8)

where

I - )I -f g;g (u)du. (2.21) (I + rF 1 + YAP)(I + rkrk + r G)

Lastly, we should comment that the two-lump solution (1 + rGXl + r, + yk , + yGj)
given by (2.17) has six arbitrary functions, whereas the one- Directly from this, we have that the asymptotic initial re-
lump solution has only three. Thus, with a two-lump solu- duced action a,. is
tion one may be able to shape the asymptotic initial profiles 1*4(1
independently, instead of only "one and one-half", as is the a(. 3.9) + 11'XI + rF,)(1 + r + r, + Y'A)l,
case for the one-lump solution. However, for now we shall (3.9)
only concentrate on the one-lump solution in spite of the and the final reduced action ao is
restrictions, due to the simplicity. a,, - as, + r, rk l, (3.10)

III. ONE-LUMP INTERACTIONS 0

In this section, we shall investigate the range ofinterac- (1 +r1, 1 +r~r'Xl +y1Fr +y3T' 3 lI'z+Yi'i)
tions available in the one-lump solutions. What we shall do, (1 + yFXI + rJ'2X 1 + r 3'1 + y,1r + y2J 2 + Y r )

in as far as is posible, is to specify the initial actions in the (3.11)

asymptotic envelopes, and determine via the one-lump solu- Note that up to a sign carried by yTA, the change in the
tion what the final actions must be. In general we will not be action is the same for all three envelopes, in agreement with
concerned with what the exact initial shape or form is. We the three conservation laws of action, which are
will only be interested in how much action is in the envelope. d Cd
-is we shall see, although the shapes are cros-correlated as iJdX(iqiqi + ysq;q,) -0, (3.12)
in (2.19), the actions are not, and can be specified indepen-
dently. Thus due to this simplification, it is well worthwhile Now, according to (3.9), the initial reduced actions are a
to study this case. function of the three r's, and one can also invert this to
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can always depend on x,.) Note that these functions are com- We define the action in the/h envelope A, by
pletely arbitrary, thus there is a large amount of freedom in
shaping this pulse. However, the shape is not totally arbi. A1(t) f: d{ dyf dz q;q. (3.1)
trary, because the functional dependence of q, on X2 andX3 is
required to be of the form of a simple product, except for the In order to evaluate the above integral, we transform to char-
terms in the denominator. acteristic coordinates. Directly from (2.4) for t constant, one

When all the g's are nonzero in general, we have nontri- can show that
vial interactions and solutions with the general solution be- dx dy dz - JdX1 dX2 dr 4
ing given by (2.12). To obtain the asymptotic initial profiles
(the profiles as t--., - w) according to (2.4b), we take the = JdX2 dX3 dX4

limit of the corresponding characteristic coordinate going to = J dX3 dXI dX. (3.2)
+ co. Thus, to get the initial profile for g,, which we shall

designatebyQ1,weletx,-- + c in(2.12)for(i,j,k) = (3,1,2)
giving, J= (v, - v2)X(v 2 - VA. (3.3)

91= g{(X3)g29( 2)/[l + 2G 2(X2) + r 3G 3(' 3)1. (2.19a) Thus (3.1) becomes

Similarly, the other initial profiles are As(t) = J r" dxas(l 4 t), (3.4)
=: =g (xdg,(x3)/[ 1 + r"1Gdx1) + r3G3L('3)), (2. 19b)a-,Q3 =gi(XI)g1 (j't[l + r1GICr,) + Y3G 2(;. (2.19b) where the "reduced action" aj is defined byQ3 " - [,]2 g )/[ "7I~ G,(X,) "{ 72G2(:t2)]. (2.19c) w

Again, one should note that we have a large degree of flexi- aj(X,,,t) = f dX_ dXkqqJl,- (3.5)
bility in shaping any one profile in (2.19). However, after the d', _ .
first one is shaped, say Q3, then g, and g2 have been specified, In practice, it is impossible to evaluate (3.5) when
and only g3 is left arbitrary. Now, we are only free to specify X, = - t - X .-- Xk- However, if instead we define
"one-half," of another profile. So for the general one-lump f- f-
solution, we may only shape "one and one-half' profiles ar- a,(X4,XJ) = f dxk qqj, (3.6)
bitrarily, subject to the product form in (2.19). Even with this f

restriction, one can still obtain useful information concern- and since as t-. ± o, q, becomes independent of X and we

ing the nature of the interactions in the 3D3WRI, as we shall have

illustrate later. aj(X,t-± a)(- 4 ,Xj-:oo), (3.7)
One can similarly obtain the fnal profiles, designated thus allowing us to evaluate the initial and final reduced

by d, by taking the limit oft--, + w in (2.12). This gives actions from aj. In fact, from (2.11) and (2.12), we have the

= g;gk/(0 + r + r, , + rGk), (2.20) closed form solution

where a,=rk k lp. (3.8)
where

rJ - s( - 0) =f' g ,gj(u)du. (2.21) (I + rr, + rjjl + rkr, + YJGJ)

Lastly, we should comment that the two-lump solution (1 + rJG,)(l + YXrI + YVrk + rIG)
given by (2.17) has six arbitrary functions, whereas the one- Directly from this, we have that the asymptotic initial re-
lump solution has only three. Thus, with a two-lump solu- duced action a. is
tion one may be able to shape the asymptotic initial profiles a ln[(1 + rI',XI + rkrk)/(1 + r + I' + Ykrk) ],
independently, instead of only "one and one-haW', as is the y, ++

case for the one-lump solution. However, for now we shall (3.9)
only concentrate on the one-lump solution in spite of the and the final reduced action a,, is
restrictions, due to the simplicity. = a, + r lrkh1w, (3.10)

Ill. ONE-LUMP INTERACTIONS =
In this section, we shall investigate the range of interac- ,(I + yF'+ y2 1' 2 ( ++ ,,+ '3 )(I + r 33+ , f 3j

tions available in the one-lump solutions. What we shall do, (( + 3T11 + )i + 35 + ytr, + r,72 + r3r.)

in as far as is possible, is to specify the initial actions in the (3.11)

asymptotic envelopes, and determine via the one-lump solu- Note that up to a sign carried by iy,'r the change in the
tion what the final actions must be. In general we will not be action is the same for all three envelopes, in agreement with
concerned with what the exact initial shape or form is. We the three conservation laws of action, which are
will only be interested in how much action is in the envelope. ±f d • +
As we shall see, although the shapes are cross-correlated asdtJ d3 (y"q~q1 + y'qqj) -0, (3.12)
in (2.19)L the actions are not, and can be specified indepen-
dently. Thus due to this simplification, it is well worthwhile Now, according to (3.9), the initial reduced actions are a
to study this case. function of the three r's, and one can also invert this to
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obtin'the Fs in terms of the initial reduced actions. To do ml >m 2 n 3, (3.21)
this, one first defines and then (3.17) becomes

M - [Y, - r, rkexp( - r rta.)]P2, (3.13) M - (M -m 2m3)2/(l + mIXl +ml), (3.22)

which is always real, and for aj <1, M = (in2 + mIm 3)
2/(l - mi X + M2), (3.22b)

M(-.) .  (3.14) M f= (M3 + mIm 2)
2/(1 - m2)l + mi), (3.22c)

From (3.9) and (3.13) one can show When m,~m~m, this solution corresponds to a decay of the

I'j/(l + f) mmk/m j . (3.15) high frequency pulse q, into the two daughter waves q2 and

One should note that no nontrivial solution exists when any q3. To illustrate this, we shall assume m2 = M3 , and then
one of the reduced actions is chosen to be zero. This is a from (3.19) and (3.22) we find that

consequence of using the one-lump solution. However, we elf= e-e-"/(l + 2m mfe°), (3.23)
may choose any reduced action to be as small as desired, but
not zero, as long asa physical solution will exist for (3.15). which for at--.co and a2<1 gives

Assuming that a physical solution does exist for (3.15), a11-- - ln(2a2,), (3.24)
oas given by (3.11) becomes so that the final action in a very intense high frequency

(1 - r2r3m l) - r1 "mD(1 - r 1 2 ) pump, will be determined solely by the initial actions in theU - rr 3m X -r rtmX - rm daughter waves. This is illustrated in Fig. 1, where we haveI - r2Y3M2 - 1,nf - r"t,ml + 27ylrrMIM2M3(3.16) plotted logavvs logaI for various values of a2o = a. The
main feature to note is that as a 1o increases (for a given value

Then from (3.10), (3.13), and 13.16), one finally obtains of ao0 = ae), a,1 remains equal to a1o (i.e., no depletion oc-

jf -1 (Mj - rj M mk )2 /(1 - r jk A 1- riyj M), curs) until a critical value of about - ln(2a 2 ) is reached, at
(3.17) which point, all additional action in the pump beyond this

where m/is that value ofm corresponding to the final value critical value is dumped into the daughter waves. Note that

of the reduced action, as given in (3.13). We shall now consid- this is analogous to the soliton decay case in the one-dimen-
er the two possible physical cases. sional 3WR. 9 However, there the critical value depended

essentially only on the absolute area under the profie of the

A. The paeuve engy oe pump itself, whereas here, it depends on the amount of ac-

When all envelopes have a positive energy one of the r tion in the perturbing daughter waves.
musthei n upl enfelopm the otive e a n o thatres- This phenomena of pump decay would be expected to

must differ in sai from the other two,' and that correspond- hold true even if the three pulse profiles were not one-lump

ofenerwaliy ten han hose hs et beave. Withutbe 1 solutions because all that is basically happening is that the
of generality we shall chooe this wave to be wave number 1, daughter waves are traveling through the pump, and at theand thus we have

rt r2 Y-3'- - (3.18)

We still have a freedom in choosing the sign of rl, since we 5.0
set the value of in (2. lOb) equal to + 1, and as we shall see, to
changing the sign of ?, will give a different solution.

In order to orientate ourselves, we first list out the val- &0
ues for mand r,. From (3.13)

M111 --- ", thUs0<M, < 1,13.19a) CIA. -2.0
Mm e't-- 1, tu<a , (3.19b)
m me"-I, thus0<m3 < *o, (3.19c)

a n d f r o m ( 3 .1 5 ) , , 2 - -. o g 0 2 " - . 0

r, - m~m,/(m, - y,mm,), (3.20a) o

1r2 - m, /(m2 + rtmlm), (3.20b) 00.
1 - m m/(m, + Y'm m 2). (3.20c)

Note that by (3.19), as the initial reduced actions are in- -0.2
creased, the values of m increase also, and that m I must be
bounded from above by unity, while m2 and m3 are un-
bounded. From (3.20) we shall obtain the allowed range of -OA 0.0 0IA 0.S 1.2 1.6 2.0

theinitialreducedactionsifthecollisionistoberepresented log a io

by one-lumpsolutions. ~ -+1cs.Te o , dcdato , ~ ea oafnlrdcdato f,.dpnigo hp FI. I. The decay case. An initially intense high frequency pump of re-
Am wesalha onl ider the r, - + I c Then forr, ducedactiona, willdenytoafnah eduoedationofal, dependingonthe

to remain positive and finite we must require intial reduced actios (a2. = axj in the daughter waves.
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critical value, the growth rate has become equal to the rela-
tive pulse width allowing depletion to occur. Beyond this
simple picture our result confirms what one would expect.
Namely, the relative depletion becomes more and more as
the initial action in the pump is increased.

There is another region of this solution where m, ap- I*$ a,% t
praches M2M 3 from above, and from (3.22a), one can see I 
that for this, virtually total depletion of the pump can occur.
But we do not believe this feature to be a general feature. o
Rather, we consider it to be a special property of 1-lump
solutions, and in general it should not occur for general
pulses.s

When , = -I we have the opposite of decay, which is •
upconversion. Without loss of generality, we may assume -2

I M3>M 2, (3.25a)
in which case the allowed physical parameter space, from 3.

(3.20), is

m, <m2/M 3, - (3.25b) -4

and (3.17) becomes
, = (m, +rn,,m) 2/(l +r Xt + m ), (3.26a) -4 3 -2 1 0 1 2

Mf2 = (M2 - mIm 3)2/(l - M2 Xl + m2), (3.26b) l
FIG. 2. The upCnvemon cas Two interacting daughter wave of redti

n, = (in3 - r 2m,) 2/(l - m )(1 + m). (3.26c) action am - a, interact and pumpeaergy into the high frequency wave,

If we again consider the case where m2 = M 3, then (3.25) creating a pump wave of final reduced action all from a,€,

becomes trivial and no restrictions are placed on our param- r - mimk/(mj - y mimn), (3.31)
eter space. Then while (3.17) becomes

eI- e 't-/[(l - m)(2e- 1 + m)], (3.27) Mr2 1=(mj - ),rMiMk)/(1 - m)(1 - mi.). (3.32)

and for ao--* c with ao4 1, we find

a,--2o - ln2, (3.28a) When = -1 (3.31) gives no restrictions on the pa-
while in the limit of ao--0 and ao-*O we find rameter space, so we shall handle this solution first. By

) + )111.2(3.30), if the final reduced actions are to be real then mf,. < 1,
a-a (3.28b) which by (3.32) requires

Equation (3.28) gives two important limits for the final ac- m2 + rn + m2 + 2mtm 3 <1. (3.33)
tion in the pump. In Fig. 2, we have plotted loga, vs loga2

for various values of logao. The main features are that as If this requirement is not satisfied by the initial reduced ac-
ao-_0, a| _alo, so that no conversion has occured. Then as tions, then a singular solution will develop with all three ai's
a2o increases, when it reaches the critical value of becoming infinite at some finite time. This can be verified
a=(a 0 )l1 2, upconversion starts to occur with a , rapidly from (2.12). A similar result was obtained in the one-dimen-
approaching the criticai value given by (3.28a). Again, this sional case." However, here the system seems to be linearly
feature is similar to that which occurs in the one-dimension- stable, since if m2 and m 3 become infinitesimal, then q, is
al 3WRI, 9 except that there the critical value depended only only unstable for m, infinitesimally close to unity (i.e.,

on the absolute areas under the daughter profiles, whereas ao-+o).
here it depends only on the amount of action in the high In Fig. 3 we show this stability region for the case where
frequency pump. Still, for large amounts of action in the ao - a3o. In this case, the stability line from (3.33) is deter-
daughter waves, an almost total upconversion can occur. mined by

?"'m 2/El + (I -- e-o)lf,]. (3.34)
9. The negative energy eme -a 2[-_, (3.34) gives that

The only other case which differs from the above is ao--*in -4) , that

when the high frequency wave is a negative energy wave, in
which case while as ao-*O we have

-1 T2 = T.- (3.29) al- - ln(4a2o). (3.35b)

Now, the corresponding expressions for the m's and the r's If we consider q, to be the pump and q2 and q3 to be the
are daughter waves, then (3.35) and Fig. 3 show that once the

action in each of the two daughter waves has exceeded in2,
m I - e', thus O<m < 1, (3.30) thesolutionwillbeunstableforanyvalueoftheactioninthe
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m,>M2 <m3. (3.36b)

Now, we use (3.32) to demand thau nt% < I gives
m1 + m2 + m' - 2mm 2m 3 < 1, (3.37)

which due to (3.36) is always satisfied.

IV. CONCLUSIONS
-2

With somewhat remarkable simplicity, we have found a
quite interesting set of exact solutions for the 3D3WRI

S- 3 which very nicely illustrate such efects as pulse decay, up-
* conversion, and explosive instabilities. This was all accom-
o -4 plished by considering the very simple one-lump solution

obtained from the Bicklund transformation. We would ex-
pect that two- and three-lump solutions would provide even
more interesting results.

t* I

-3 -2 -1 0 1 2
log a1o

FIG. 3. The nega've energy case for a2, = a3, When the initial reduced 'D. J. Kaup, "The Solution of the General Initial Value Problem for the
actions lie outside and above the curve, the solution will always become Full Three Dimensional Three-Wave Resonant Interaction" (To appear in
singular in a finite time. All solutions under the curve are stable. the Proceedings of the 1970 Soviet-American Soliton Symposium, Kiev,

USSR, Sept., 1979, and in Physica D.1
pump. On the other hand, as the daughter waves become Iv. E. Zakharov, Doki. Akad. Nauk. SSSR Scr. Mat. Fiz. 228, 1314 (1976)

infinitesimal, a large pump is stable until its action exceeds [Sov. Phys. DokL. 21, 322 (1976)].

the value in (3.35b). Thus in theory, a large negative energy 'A. D. D. Craik, "Evolution in Space and Time of Resonant Wave Trinads.
Part II: A Class of Exact Solutions," Proc. R. Soc. London, Ser. A 363.

pump can be stable, but due to the critical value in (3.35b) 257-269 (1978).

being logarithmic, even the smallest finite noise level will 4H. Comille, J. Math. Phys. 20, 1653 (1979).

place a practical upper limit on this stability. 'D. J. Kaup, Physica D 1, 45(1980).

The y, = + I solution is stable, although the param- 'J. Corones, J. Math. Phys. 17,756 (1976).
eD. 3. Kaup, Mathematil Methods andApplcatons ofSattering Theory,

eter space is restricted. Without loss of generality, we can Vol. 130 of "Lecture Notes in Physics", edited by J. A. DeSanto, A. W.
take Seenz, and W. W. Zachary fSpringer, New York, 1980), pp. 247-254.

'L. P. Nilnik (to appear in the Transctions of the Conference in the Mem-
m"m 2 )mi, (3.36a) ory of1. G. Petrzovskii, 1976, Moscow State University Press).

in which case (3.31) gives 1D. J. Kaup, A. H. Reiman, and A. Bets, Rev. Mod. Phys. 81, 275 (1979).
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Whistler wave self-modulation In a tokamak plasma
S. N. Antani and D.J. Kaup
Department of Pk,,kx Clarkion ColUep Pondam. New York 13676
(Received 31 March 1980 accepted 17 March 1981)

Steady-state self-modulation of a whistler wave propagating at an arbitrary angle to the applied magnetic
field, in a typicai tokamak plasma, is investigated. The envelope is found to be modulationally stable for the
paramew reSinw chou.

Linear analysis of whistler propagation in a tokamak In Eq. (1), the time dependence has been removed as
plasma has been reported by Theilbaber and Bers.' exp(-iwt), where w is the incident frequency such that
In the present work we include the effects of weak, G, <<w << n,, with fl,, f?, being the electron and ion gyro-
ponderomotive nonlinearity. Several workers have re- frequencies, respectively. Also, the space variables
ported the modulational instability of whistler wave in a x, z and the electric field components are expressed in
magnetoplasma.2' 4 However, the parameter space of units of the incident wavenumber k,= w/c, and the ther-
tokamak plasma has not been considered. mal energy (161rnoTo)1 / , respectively. To, , no are the

We work under the following basic assumptions: (i) central values of plasma temperature and density.

The necessary accessibility condition for propagation Equation (1) is nonlinear due to the density dependence

into the plasma interior is fulfilled. This together with of the dielectric tensor elements
the requirement of minimum attenuation at the plas- K, =K, 0 + (K o - 1) .n K. =K, o -,, K,,o 1 +
ma edge limits the allowable range of the parallel re- no '
fractive index, x =kc/w, to a narrow band, typically, where as usual
1.2< n,< 3. (iI) The exciting structure is infinite in o, ) ca9 (x) 
the y direction (thus, d/dy=0). (iti) The density grad- Ko I - -+ Kro
lent can be treated as a weak perturbation, becoming
important at the same order as the nonlinearity. (iv) and
Only a cold, colllsionless plasma is considered. The K, (x)
temperature effects enter only through ponderomotive
density modification. In our two-dimensional model, wc,2(x) are the plasma frequencies of species j, corre-
we take the external magnetic field along the z direc- sponding to the unperturbed density no(x). On is the den-
tion and let the plasma be weakly inhomogeneous in the sity perturbation caused by the ponderomotive force.
x direction. We start with Maxwell's equations written One derives the expression for 8n/n o in the usual way
in component form,' by considering the dc part of the electron-ion motion

and subsequently balancing the ponderomotive and ther-
('+ K - i KSI£,- exas, 0 , (la) mokinetic pressures. The result' can be expressed in
iJK, + (0a.+ +K,)E,=0, (lb) matrix form as

-8, 8.E. + (d. + K)£, =0. (10 ./9, -(E 1 ME), (2)
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where ' means an adjoint, E is the column vector with We next choose the following typical tokamak plasma
elements E,, E,, and E,. M is the matrix formed out parameters: central density, n, = 2 x 1ol cm'3; rf
of the linear part of the dielectric tensor elements K1o, frequency, w = 5 x 10 rad/sec; magnetic field Bo,- 20
K,., and K,,,. We then represent Eq. (1) in operator kG; plasma radius a= 10 cm; central electron tern-
form as perature T,,= I keV; central ion temperature T, = 200

LE = (n/no)ME. (3) eV and n, = 1.5. The density and temperature profiles
are taken to he parabolic. Then, 9(x)= (1 -x 2

/a 2)2.
In L is the linear operator constructed from Eq.
(1) .. er taking out the nonlinear part. In the central, quasi-homogeneous region, we can

ignore the last term in Eq. (8) and have roughly,
Next, we carry out the standard multiple scale pro- IKo I - 1, IK,0 I-10, and I K.,,o1-10 3. Then, Eqs.

ceduree°' on the system given by (3). Write the elec- (9)-(11) simplify. In Eq. (9) for p, the first term in
tric field as the numerator is dominant showing p to be negative.

From (10) we can see that q is positive definite since
E = 6 exp(i fn, d + in,z) + c. c. , (4) the numerator is squared. [This follows from the form

of (2) and (3). The same matrix M occurs in (2) and (3)
where n,=k.c/w is the perpendicular refractive index, making the numerator of q a perfect square. ] Thus pq
and expand the slowly varying envelope 8 as, < 0, which means that the wave is modulationally

= 
1 +E 2

£+•., (5) stable. Therefore, no solitons can form and the non-
linear propagation will qualitatively follow that of the

where e - I is a formal ordering parameter. We as- linear wave. In addition to nonlinearity, as one goes
sume the ordering toward the edge, inhomogeneities can also become im-

infil >> > I l;l *>j~ portant effects. In order to discuss these, it is con-
'' 0 11'1 ' venient to rescale Eq. (8). Define p= v - , V2 =2q ,

where C = z -f'audx and u will be defined shortly. Sub- and =(-p)/. Then, (8) becomes
stituting (4) and (5) Into (3) we find at first order that
5' must be an eigenvector of L (n,, in,) with a zero iag - a,0 + 21 0 1i0 + if(x)0 = 0, (12)
eigenvalue, and that the dispersion relation for the fast
wave, using the approximations, IK,, I K. , 1 and which again is modulationally stable and
Ko -K,, must be f(x = a,[ln(2/q) / 2] - r,(lnn,). ,13)

n 2.K>/(n, -Ko) -(n2-K.o). (6) Now, if 0 is sufficiently small so that the nonlinear term

t the next order we find that u must equal the ratio of in (12) can be neglected, then (12) becomes linear and
the group velocity components, or nothing more needs to be said since it is well known how

v d_ -to solve such a linear problem. Hence, we are left with
u = __,.= _ _& (7) only the case when both the inhomogeneity and the non-

vs, dn, linearity are simultaneously important. Frequently,

Finally, at third order, we arrive at the following form in such cases, nothing definite can he said without much
of the nonlinear Schrddlnger equation work. However, for lower hybrid waves in the electro-

static approximation, Leclert et al. ,8 treated the in-
0,0+pa+q1 10- ir8. (ltno)0=O, (8) homogeneity as a weak perturbation. At the edge of the

where 0 is simply the amplitude of S' (i. e., s' = *v1, plasma using the approximations, w 1./W << 1 and wV
where L(in,,in,)V, =0 and V,V--= 1). Equation (8) de- r << 1 and assuming a linear temperature profile,
scribes the slow, stationary evolution of the envelope they found that f (x) can be approximated as f (x) = 1/2x.
A$x, 0). The last term in (8) arises from the spatial In this case they found that Eq. (8) was exactly solvable.
nommiformity which we have treated perturbatively. We shall note that Ax) as given by (13) is profile de-
Further, the coefficients p, q, and r depend on x and pendent and goes almost like 1/2x, but not exactly. For
represent, respectively, the effects of group disper- a parabolic density profile we find that f(x) corresponds
sion, nonlinearity, and nonuniformity. We find the to the exactly solvable case within about 30% in the
expressions for p, q, and r using the linear dispersion range, 0.2 < wx/a < 0.5. On the other hand, for lin-
(6) and noting that n2 I K,,, 1. These are ear density-temperature profiles, we find that f(x) could

[-(2n. -- KII)K_ + 6nsK/ !( - K,) 2 + (- K..) 4
K,] be approximated over a wider RF range in order to corre-

2n,(n.o - (n- K1[o) spond to the exactly solvable case. Thus, we conclude,
(9) subject to the profile giving an A~x) reasonably close to

[K,(2n2 - K,! - 1) + 1/2x, that one also can simply apply the results of
q 2n,(, - Ko)I[K.1 o+ (n, -()]0x) '0) Leclert et al. to whistler wave propagation.

2 - - )2 It seems that self-focusing (i.e., soliton formation)
r ,)[K + (. -1) (11) will not occur for the nonlinear "fast" wave in a toka-

-0,0. + (,e. - K1 )' mak plasma. This could prove to be advantageous in
Equations (3) and (9)-(1) are our basic results. In heating the bulk of the plasma for fusion applications.
Eq. (10) This research was supported in part by Office of Na-

SW) = nox)T(x)/noT, val Research contract number N00014-76-C-0867.
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THE LINEARITY OF NONLINEAR SOLITON EQUATIONS
AND THE THREE WAVE RESONANCE INTERACTION

D.J. Kaup

Physics Department
Clarkson College of Technology

Potsdam, N.Y. 13676

ABSTRACT

Based on a representation found by Professor Newell, it is
illustrated how the general solution of nonlinear soliton equations
are really simple linear sums. Then the general three-wave resonant
interaction is discussed, what the resonance is, and the three-
dimensional scattering problem which is used to solve it. In
particular, we contrast the standard one-dimensional inverse
scattering with this form of three-dimensional inverse scattering.
The principle difference is that no bound states occur in this form
of three- iimensional inverse scattering, and thus no solitons exist

in thy .imensions. However, it is shown that from a Bicklund
transt .-mation, one can construct localized solutions, called "lump"
solutions, and their properties are discussed.
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THE LINEARITY OF NONLINEAR SOLITON EQUATIONS AND THE THREE WAVE

RESONANCE INTERACTION

D.J. Kaup

Physics Department
Clarkson College of Technology
Potsdam, N.Y. 13676

I. INTRODUCTION

The purpose of a school such as this is to provide a background
of information for those interested in a given particular subject.
The basic fundamentals of solitons have already been well expanded
on by the previous talks, and in general, the most that I could add
without excessive duplication is simply additional references
[Kaup, 1977; Kaup and Newell, 1978a, b; Kaup et al, 1979], which
describe my viewpoint on these basics. However, there is one basic
point that still has not been emphasized here, and which I have
always considered to be striking and important. That is the fact
that although these systems are indeed nonlinear, their behavior so

closely mocks or imitates linear systems, that one is frequently
ahead if he simply forgets that #t is nonlinear, and looks upon the
system as being essentially linear. For example, Professor Newell
[Kaup and Newell, 1978b] has demonstrated a striking representation
of the general solution for q in terms of the squared eigenstates.
This expansion, for the Zakharov-Shabat (ZS) case with r - -q*, is

q - ( 12 + 4 - * 2 dc + 2i k 7 12 -Y )2, (1.1)

with the notation as in Kaup and Newell [1978b]. Note that the
solution, as given in (1.1), is an exact linear sum (integral) over
a radiation (continuous spectrum) part, and a linear sum over each
and every bound state (soliton). There is absolutely no difficulty
in identifying what part of the solution is radiation, and what
part belongs to the kth soliton. It's right there in the expansion
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given by (1.1). The only way that the nonlinearity enters at all
in (1.1) is in the squared eigenstates. In the radiation part, the
eigenstate is a plane wave only as x - ±- , and for x finite, under-
goes phase shifts and a WKB swelling of its amplitude as it passes
over the position of any bound state. But still, qualitatively
these continuous eigenstates are very much like plane waves, and
the radiation part of (1.1) is simply a "nonlinear Fourier
transform",CAblowitz et al, 1974], where b/a is the continuous part
of the nonlinear Fourier transform. Similarly, since the soliton
part of (1.1) is given in terms of the bound states, it follows that
each soliton solution is localized. And again, the only way the
nonlinearity enters in the soliton part of (1.1) is through the
squared bound states, where the radiation will only, at most, minorly
influence the shape of these bound states.

Thus these exactly integrable systems exhibit the feature that
although they are nonlinear, their behavior is very remarkably
linear. Mathematically, this is demonstrated by the system being
exactly integrable [Ablowitz et al, 1974],by (1.1), and even may be
visually seen in almost any computer plot of such solutions. As is
well known, by a simple cursory visual examination of almost any
such solution, one can pick out all the sol~tons and identify the
radiation part, due to the usual striking contrast between the bound
states and the continuous eigenstates. And, except for phase shifts,
one can actually visually see that these states are noninteracting.

So, what I want to leave with you at this point, is the
empirical observation, that if you consider these nonlinear systems
to be "almost" linear, many of their "strange" features become
understandable, and one can be lead to predictions [Kaup, 1977;
Kaup and Newell, 1978 a,b; Kaup et al, 1979] concerning further
features of such systems.

For the remainder of this lecture, I want to concentrate on
some of the basics associated with three-dimensional inverse
scattering, such as that which is used in solving the three dimen-
sional three-wave resonant interaction (3WRI). But, before we even
look at that, we first should describe this 3WRI, and explain what
it is, because a basic understanding of it is very useful in
understanding the associated 3D inverse scattering.

There are many examples that one can use to illustrate the
3WRI, one of which dealing with electromagnetic interactions, was
given in our general review CKaup et al, 1979) of the one-dimensional
case. Instead of duplicating that one here, or something similar, I

shall go almost to the other extreme, and instead consider only a
very simple mathematical model. We could actually choose any
hyperbolic system possessing a quadratic nonlinearity as. its lowest
order nonlinearity. But to keep things simple, we shall choose one
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of the simplest of all such models, namely the wave-equation with a
nonlinear term,

a2 - 72 = . C02  (1.2)
t

where 0 is a real field. Again, I emphasize that (1.2) is simply a
mathematical model, which contains the essential features which we
require: propagating waves and a quadratic nonlinearity. Almost
any such system with propagating waves and a quadratic nonlinearity
will give rise to the 3WRI in the weakly nonlinear limits. We shall
now illustrate this with the model (1.2). With e - 0, (1.2) is
exactly linear, and one can create solutions of (1.2) using linear
superposition. And, since such a linear solution remains linear for
all time when e = 0, there is nothing more that needs to be said
about such a solution. But, when we "turn-on" the interaction and
allow e to be nonzero, sooner or later something is going to happen
to destroy this linear superposition. Letting 0 be a general linear
solution becomes too difficult to attempt when e 0 0. So we simplify
and the easiest simplification is to let 0 be a sum of almost planar
waves, that is let

0 ei uj(x,t) + c.c. (1.3)
J-1

where

86 - k 'x- t, (1.4)

c.c. means the complex conjugate, and where the envelopes, uj, are
allowed to be complex and are assumed to be slowly varying with
respect to the phase of the plane waves. In other words, any
envelope will contain many, many oscillations or wavelengths under
it. Furthermore, we assume each kj to be well separated from the
others.

Under these conditions, the zeroth-order solution (1.3) will
appear to be composed of N distinct envelopes. Each one of these
envelopes will contain many, many oscillations, and each of these
oscillations will be described by a wave-vector, tj, and a frequency,
wj. And as one looks at any specific wave or oscillation, inside
of any envelope, and considers only its nearest neighboring waves, the
solution does appear to be a plane wave. It is only when one
considers the solution over many oscillations that one does then
note the eventual decay of the wave, due to the envelope. The
purpose of these envelopes are two-fold. First, they serve to keep
the total energy and spacial extent finite, and second, there are
no real physical plane-wave solutions. All physical solutions are
really bounded, and so using an envelope gives us a physical solution.
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When e - 0, (1.3) is an exact solution, providing we restrict
our choices of wj to

W . (1.5)

This is just the linear dispersion relation. Now, to understand
what can happen to the solution when e # 0, we shall first consider
the e,2 term.to be an inhomogeneous term, and thereby driving *,
in (1.3), like a source term would. So, we use the linear Green's
function, and have that

= - Shorn+ e dt'Jd3x' C(-',tt'),2(x',t') , (1.6)

where

G(+,t) 1 C d3 k ei inCtw(k) 1 (1.7)

(27) 3 Jw(k)

and

w(k) - (k2) (1.8)

In (1.6), Ohom is the homogene6us solution of (1.3). Now, I want
to remind you that one interpretation of (1.6) is in terms of
Huygen's principle. This interpretation is as follows. At -' and
t', an amount of f is created by the 02 term, of amplitude and
phase 02, which is then propagated to * and t by G, and its final
amplitude and phase at x and t is simply E,2. Now, one simply
integrates over all possible values of V' and t' for the final result,
(1.6). Well, let's simply consider what terms might be present in
f2 and take the simple case where we have only two envelopes.

Then

2 82 2i 2 21e2ie2 +

= ule + u e Jul
1 (1-2) +uue~ u+2

+ 2uj. 2 e i(el-e2)+ +i(el+62) + c.c. (1.9)

Now, take (1.6) ana (1.7) and rearrange it so that we do the integral

over x"' first, over t second, and over t' last. The first four items
in (1.9) correspond to simple harmonic generation [Kaup, 1978]
and side band modulations, which are only special cases of the 3WRI.
So, we shall ignore these terms here, and put our attention on the
5th and 6th terms, which represent an interaction between the two
envelopes. Then in (1.6), the integral over V' will give Its

largest contribution when t - kI t 2 , and also when k - k2)

I. - -. - m-~-
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And, at these values of k, the integral over x' also gives very
strongly peaked functions of t, which are almost delta functions in
the above variables. Thus, in t-space, the interaction separates
into distinct regions, centered at each of the above values of t.
The width of each region in t-space is, of course, inversely propor-
tional to the width of the associated envelope in x-space. Now each
of these regions in t-space will have a time dependent phase
ssociated with it. At t - t1 +t-2 , this phase is -(wI +w 2)t, at
k - 11 -12, this phase is -(wl -w2 )t, etc., all of which follows from
(1.4), (1.6), and (1.9).

Next, we consider what happens when we do the d3k integral in
(1.7). And since the d3x' integral gave essentially delta functions
in t-space the d3k integral simply gives us a sum, one term for each
region in i-space. But this just, in effect, gives us back what we
started with, except that the amrlitude and phase factors in (1.7)
have been inserted. For example, about t - tl 4,2, we obtain

ulu2 e i ()j ° x + k 2. -Xw t ' - W2 t ' )  
k(+k (1.10a)

and about the region t= - 2, we similarly have

2 ei ~kj'x - k 2 "x -Wl t ' W2 t ') sin((t-t')W(t 1 -12 )], (l.lOb)

and similarly for the other terms.

The result exemplified by (1.10), interpreted in terms of
Huygen's princitle, is simply the net result of all wavelets pro-
duced by C02 at x' and at t', upon summing over all possible values
of I", chosen such that all wavelets end up at I, and at the time t.

We now consider the last integral over dt'. Note the time
dependencies in (l.10a) and (l.10b). We shall simply state the
result. If in (1.10a), w 0 w, + w2, then this term will remain(bounded by the order of e for all time. Thus the effect of this term
is simply to produce a small perturbation on the linear solution.
But, if w = wI +W 2, then this term will grow linearly in t, and
cannot be considered as a small perturbetion. In fact, it can grow
so large that it starts to deplete the initial envelopes. The

interaction has now become fully nonlinear. This term does not then
produce just a small perturbation on the linear solution. This term
will drastically alter these initially linear solutions, and will
cause them to interact. _n terms of Huygen's principle, the wave-
lets produced by the k, +k 2 term, (l.10a), at t', reach t with the
phase factors (W1 

+ W2
± W)t, since the sine term in (1.7) contains

both signs for wt. Thus, in general, these wavelets

.

. ..*.. . . . . . . . ..
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will reach t with various and almost random phases, such that when
one adds over all t', much cancellation occurs. But, if =W1 + W2,

every one of these wavelets reaches t with exactly the same phase
as every other wavelet. The wavelets are now all coherent and in
phase, so that when one adds over all t', one obtains a linear
growth in (t-t'), which can only be limited in its growth by the
actual finite extent of the initial interacting envelopes, which up
until now, we have considered to be absent, by using only plane
waves. This is a resonance phenomena, when W -WI +W2. When this
resonance phenomena occurs, a small perturbation, as in (1.2), can
drastically affect the linear solution, so much so, that one must
now consider the nonlinear solution, and recognize that (1.6) is
not valid when resonance occurs. And similarly, for those terms
which do not contain resonance, (1.6) is still a valid method of
treatment, since they always remain small.

Now, what happens at such a resonance? As one can see from
(l.lOa), a new wave, o wavevector tl +t2, is being created. It
has a frequency w - w(tI +t2), and thus is a linear solution of
(1.2), due to (1.5). It grows linear in t (at least initially), and
when the interaction turns off (by the two initial envelopes
eventually separating) it propagates as a free wave. So, two waves
have interacted resonantly, producing a third, wave, whence the
name "three-wave resonant interaction".

Of course, this interaction is not restricted to the model
(1.2), but will occur in any system which has envelope waves and a
quadratic nonlinear interaction, and where the resonance conditions

k+k, - 0, (1.11a)

W10, (1 .1b)

w, a w(k ) ,  (l.llc)

can be satisfied. In (1.11), we are introducing a convention where
the sum of all 's and w's are zero, which can always be done for a
specific set- of 's and w's, by simply redefining them with appro-
priate signs. This form is chosen, since the resulting 3WRI
equations will be highly symmetric.

So, when the resonance condition (1.11) is satisfied, we cannot
obtain a solution by simple perturbation techniques, as in (1.6),
but must consider the weakly nonlinear ( - 0) case. Since two
waves are interacting to produce a third, we start with three waves

- el ul + eie2 u2 + e ie3  + c.c. (1.12)

~t
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and due to (1.11), the three phases are not independent, but satisfy

el+e2+e3 = 0 . (1.13)

Now let's insert (1.12) into (1.2), retaining only the lowest order
terms. This gives

3 _ _
-l 2i 2jeiei(3 t -J j u

21 we (a+ 7J-1 j

= -
, (1.14)

+ Ulu , +

and where we shall still ignore all effects of harmonic generation
1 .

Upon balancing terms of like phase in (1.14), one obtains

(a t vV)u U (1.15)

where v-= l/u is the group velocity (since dispersion is absent)
and (j,kf) in 1.15) is cyclic in (1,2,3). There are thus three
equgtions contained in (1.15). Upon scaling the envelope ampitudes,
one can obtain (1.15) in the canonical form [Kaup et al, 1979],

(a- vj "V)qj - iy qkq; , (1.16a)

where the q's are the scaled amplitudes, and

Strictly speaking, for the model (1.2), one cannot ignore harmonic
generation, since given anytt, there exists a solution for
w(2A) - 2w(k). Thus due to the absence of dispersion in (1.2),
harmonic generation is always resonant, and can never be ignored.
In more physicql models which have dispersion solutions will exist
to W,21) a 2w(k), only for special values of i. Thus, in general,
harmonic generation is not resonant, and indeed may be ignored,
unless one of the V's happen to be one of these special values.

_______ ________________________



104 D. J. KAUP

yj a sgn(wEj) , (l.16b)

where Ei is the energy of the jth envelope.

Once given (1.16), the method of solution depends first on the
number of independent dimensions, or directions, appearing in (1.16a).
For example, if you were given the q's as being independent of ,

then you have only a one-dimensional problem (only a t-dependence)
regardless whether or not the group -yelocities are in independent
directions. Another way to have a one-dimensional problem is to
have all three group velocities equal. Now, we have only one
characteristic direction, with the different streamlines never
crossing or mixing. So, we simply solve the one-dimensional problem
along each and every streamline.

In each case when the 3WRI reduces to a one-dimensional problem,
one can always give the general solution in terms of elliptic
functions [Armstrong et al, 1962]. When only two of the derivatives
in (1.16) are independent, one has what is commonly referred to as
the "one-dimensional" case, by which one means one spatial dimension
(plus one time dimension, giving a total of two dimensions). Solu-
tions fir this case were given first by Zakhagov and Manakov [1973],
and the recent paper [Kaup et a], 1979] in Reviews of Modern Physics
gives an up-to-date account of what is known about this two-dimensional
case, both in terms of inverse scattering and numerical calculations,
and how they both compare.

So, this only leaves the most general case, namely when (1.16)
has all three derivatives as being independent. This is the full
three-dimensional (3D) case, and is the case I shall discuss here.
I shall not attempt to explain all the "ins-and-outs" of 3D inverse
scattering here, since first there is not sufficient time, and
second, this audience is not primarily interested in these ins-and-
outs, but rather in the general principles involved. So, here I
shall seek to emphasize how this 3D problem differs from 1D inverse
scattering, and how it is still similar. As for references on the
3D-3WRI inverse scattering, Cornille [1979] and Kaup [1980a] give
the first successful attempt to create a workable, albeit clumsy,
inverse scattering. The papers by KauR [1980b; 1980c] are concerned
with the "global scattering problem", which could nevertheless solve
a special class of initial value prob'ems. Kaup [1979) gives the
final and complete solution of the general initial value problem,
and with remarkable hindsight, the paper by Kaup [1981] then allows
one to completely bypass inverse scattering, and construct physical
solutions with a technique very similar to, and undoubtedly related
to Bicklund transformations. What I shall do next is to discuss the
principle ideas involved in Kaup [1979), and conclude by discussing
the three principle types of solutions given in Kaup [1981].

iMMMi
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II. THE SCATTERING "ROBLEM FOR THE THREE-DIMENSIONAL THREE-WAVE
RESONANT INTERACTION

Before discussing the scattering problem for this system, I
first want to ensure that the shape and nature of the solutions of
the 3D-3WRI are understood, because centering on this, we can simplify
the method of solution. First, the interaction region in space-time
is often finite, and is defined to be that region where two or more
of the envelopes overlap. If you are in a region of space-time
where there is no overlap of the envelopes, there is no interaction,
since qj qk - 0, and by (1.16), each envelope then propagates as a
free envelope. To know what happens in the interaction region, we
must solve the full nonlinear equations. But if we block this region
off, and consider only all other parts of space-time, then we are
considering only the noninteracting region, where the envelopes are
free. And since there is no dispersion, in this region, these free
envelopes simply undergo a simple translation, as shown by the free
solution of (1.16). Thus in the noninteraction region, we know
exactly what the solution is. And, usually this region is much
larger than the interaction region. Contrast this with other cases,
where dispersion is present. Then, one only knows the solution at
infinity. Almost all of space-time it now the interaction region,
and you only know the solution on the -oundary. But due to the
absence of dispersion in the 3WRI equations, the opposite occurs
here, in that one knows the solution in almost all of space-time,
while it is usually unknown in only a finite region of space-time.

So, let's now consider the solution in the noninteracting
region. By (1.16), each envelope here satisfies

(3t + v j V)qj - 0, (2.1)

which therefore moves with the velocity v , without any distorti-n.
Now, note that in total, we only have three operators, (at +v- 7),
while there are four space-time coordinates. This means that there
is at least one linear combination of the space-time coordinates
which is independent of these three operators. We shall call this
combination X4, and define it by

(8t +v • 7))( - O, (2.2)

for j - 1,2, and 3. For example, to find X4, go to the rest frame
of one envelope, say qj, then v1 - 0. Now rotate your coordinate
system such that 2 and 03 lie in the x-y plane. Now, it is very
obvious from (2.2) that X4 - z. As a further point, consider (1.16)
in this situation. Then no derivatives with respect to z ever
occur in (1.16). Thus z (or rather, X4 in general) appears in
(1.16) only as a parameter. This means that you may solve (1.16)

n ,__ _ _ _ - ....- ~ -
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by fixing X4 , obtain a solution, then fix X4 to be another value,

etc. In other words, solutions at different values of X4 never mix
or affect one another.

So, with X4 being defined by (2.2), there remains three other
independent coordinates, which we shall define by

3X = a . -a -. * , (2.3)
ax t j

for j - 1,2,3. These coordinates we shall call "characteristic
coordinates". As an example, if 1 = 0, v2 - i, and V3 = j, then

a solution of (2.2) and (2.3) is

t -X1 -X 2-X 3  ' (2.4a)

x -X2  , (2.4b)

y X3  (2.4c)

z X4 . (2.4d)

Of course, other different solutions will exist for other orienta-

tions of the velocities.

From (2.1) and (2.3), we have for the free solutions that

o jqj  = 0, (2.1')

or

q = q ,(XkX9,X4)  (2.5)

with J,k,X cyclic in 1,2,3. Explicitly in terms of the very
special and model situation represented by (2.4), the three equa-

tions contained in (2.5) are

ql , ql(-x,-yz), (2.6a)

q2 - q2 (-Y, t-x-y,z), (2.6b)

q3  - q3 (t-x-y,-x,z)" (2.6c)

As one will note, q, satisfies atql - 0, and q2 satisfies
(a +a )q2 - 0, and q3 satisfies (at+3y)q 3 = 0.

. . .. Xt ,yl I Hll- II
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So, what the above illustrates is that these characteristic
coordinates are very special, are determined by the velocities, and
are natural coordinates to use in this problem. When we use these
coordinates, the free solutions take on a very special form, as given
by (2.5).

Since X4 will only enter our equations as a parameter, we shall
hereafter ignore it.

Note that at constant Xk and XZ, the free solution for qj does
not change as x* is changed (provided we remain in the noninterecting
region, where (2.1) is valid). Thus qj can be considered to pa-
gate along the (±)Xj-axis.

Usually, the initial envelopes are localized and could
considered to be bounded in space. As seen in the model (2.r .f
bounded in x,y, and z, the solution is also bounded in chara, Istic
coordinates. Since characteristic coordinates are natural c
ates, we shall use these coordinates instead of space-time c -
ates. Thus our results shall be independent of the actual group
velocities, and shall be quite general.

Consider a localized free solution for qj as in (2.5), and as
shown in Figure 1. In Figure 1, 1 have attempted to pictorially
represent what a typical solution of the 3D-3WRI (for some value of
X4 ) might look like, using characteristic coordinates, and not space-
time coordinates. (I want to emphasize that the angles between the
x-axes in Fig. 1 need not be 900 as shown. What these angles would
be, would depend on the three group velocities, and their directions.
However, since no result depends on the angles between these
characteristic coordinates, we may arbitrarily stretch these angles
out to be 900. Thus, in Fig. 1, we show the angles to be 90*.)
As it is drawn, we have two envelopes qi and q coming together and
interacting, creating some qk, and then everything separates as
t - +-, with different final envelopes. We note that, as in (2.4a),
the relation

t -Xi -Xj - Xk (2.7)

is a consequence of (2.3), and does not depend on how the velocities
are directed. It is from (2.7) that one can understand how time is
directed in Fig. 1, since (2.7) defines a plane with the directional
derivative (1,1,1). Imagine such a plane in Fig. i. As this plane
would be moved toward the right in Fig. 1, t would become more
negative. At any time t, the intersection of this plane with qi,
gives the profile of qi at that value of t. Note how if this plane
would be moved toward the origin, qi and q would then approach
each other. This would correspond to two iulses (envelopes)
approaching each other. At the origin, they overlap and interact.

__!
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ixi

I
Fig. 1. A graphic representation of a solution of the 3D-3VRT in

characteristic coordinates. This solution represents an
initial qi envelope and q envelope (each at the right)
colliding, and then emerging with a reduced energy. In
the process of interacting, an amount of qk has been pro-

duced, and is seen traveling away from the collision center
along its own characteristic.

I! __ _
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Then as t becomes positive, they both come out the other side, with
their original profiles changed and with qk now being nonzero. Once
t has become sufficiently large so that the envelopes no longer
overlap, then the envelopes once again become free envelopes, and
propagate according to (2.1).

Of course, there can be initial conditions where the envelopes
would never separate, and there can be initial conditions whereby
the solutions become singular. However those are special cases, and
before one attempts to understand them, he had best understand this
simple case as shown in Fig. 1. All it is, is two envelopes coming
together, colliding and interacting, then separating. And in the
process of interacting, a third envelope has been produced or
created, which moves away along its own characteristic direction.

Let us now turn to the scattering problem itself. The original
scattering problem was given by Zakharov and Shabat [1974]. However,
it was not in a form that one could introduce characteristic
coordinates into, which caused it to appear to be more complicated
than it really was. Ablowitz and Haberman [1975] found another
scattering problem which was in characteristic coordinate form,
and is the one which we shall use. It is

k i - *kqj'k' (2.8a)

a N ' yiqjlJi ,  (2.8b)

where ij, and k are cyclic, so that there are a total of six
equations in (2.8). If one considers the integrability conditions
for these six equations, one finds that the q's must satisfy

- yqq* , (2.9)

where again, (ij,k) are cyclic, so that (2.9) contains three
equations, which if we interpret ai as a/BXi, are just the 3D-3WRI
equations, (1.16).

Now in the initial value problem, one is given all three q's at
some value of t, which we shall take to be at t - 0 for convenience.
From (2.7), in terms of characteristic coordinates, we therefore
initially know the q's only along the plane

X j -Xi-Xk (2.10)

So, we want to solve (2.8), only knowing this information. When
one considers (2.8) relative to the plane defined by (2.10), one
finds that three of the equations in (2.8) describe how the three
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O's will evolve off of the plane (analogous to the t-evolution
equations in ID-IST) and the other three describe how the three TP's
propagate in this plane. Of course, since the plane is two-
dimensional, having only three-first-order partial differential
equations for three functions leaves the solution underdetermined,
and it is exactly due to this underdeterminancy that this problem,
even without any eigenvalue in (2.8), is still a scattering problem.
It is not an eigenvalue problem as in ID-IST, but it is still a

scattering problem.

To restrict ourselves to the plane given by (2.10), we arbi-
trarily pick Xi and Xk to be our independent coordinates in this
plane. Then provided we are restricted to be in this plane, the
derivatives with respect to'our two independent characteristic
coordinates are related to the I operator by

k (v -vk) . (2.11a)

3 = (v -vi)'V (2.11b)

and the three equations from (2.8) which correspond to the scattering
problem are

- aqk Yj q k j , (2.12a)

- kq k-Yiqk*i41 (2.12b)

ai k - yiqjol- y i ql (2.12c)

and the reason this is a scattering problem is simply because Di~i,

( ak + ai)*j and ak'Pk are unspecified in (2.12). What (2.12a) does
specify is how * changes as one moves in the Xk direction, and
nothing is said a~out how i must change as one moves in the Xi
direction. Similarly for (2.12b) and (2.12c), with different
directions being involved. Due to this underspecification of these

functions, integration of (2.12) gives

- gi(xi ) + I ( }(Xiu)du (2.13a)

= " gj(Xi+Xk) + { } (i+xk-v,v)dv (2.13b)

k - gk(Xk) + f { }(wXk)dw (2.13c)

* I___________________________________________________________i _
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where the brackets in (2.13) simply stand for the right-hand sides
of (2.12), the exact form of which is unimportant for (2.13) and the
following arguments. The three g's in (2.13) are arbitrary functions,
and their specification will uniquely determine the solution. We
emphasize that they are arbitrary, and they are arbitrary simply
because (2.12) did underdetermine the solution for the 1's.

Now, (2.12) are linear equations. So, the general solution may
be given as a sum over some selected complete set of fundamental
solutions. Furthermore, we can replace the arbitrary g's with the
Fourier components, ei Xi, etc., since from these plane waves, one
can reconstruct any arbitrary function. So, for the fundamental
solution we call pi, we take

ir.Xi

gi(Xi) = e , (2.14a)

gJ ' gk 0 (2.14b)

while for the fundamental solution IS, we take

gi " gk = 0 , (2.15a)

gS(Xi +Xk) = e (Xi'Xk) (2.15b)

and for Vk we take

gi = 0 , (2.16a)

eXk (2.16b)

Now, let us see what the solution *1, (2.14), corresponds to.
In Fig. 2, we have pictorially represented this solution in the
t - 0 plane. We assume the initial data to be on compact support,
whence we can assume that the potentials (the q's) are only nonzero
inside the central circle, as indicated. From (J.14) and (2.13a),
we have for any Xk above the circle, that *i - e Xi exactly. lso
note that if Xi lies ta the left or the right of the circular
region, then again *

i - e 'Xi. Thus can only differ fromeiXi
either inside the circular regiIn, or directly underneath it.
Similarly, one can argue that *k isionly nonzero in the circular
region or directly to its left, and *1 is only nonzero in the circular
region or to the lower right, as indicated in Fig. 2.

. ... " Ti i Ji . . . . .
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, ~X k ~ x

' h
sh ado*,
region

Fig. 2. The i solution in the Xi-Xk plane. The incident wave, J1i 9
is at the top, the transmitted wave, 4i is the shadow

region below, and ' and p are the two reflected waves.

Vk
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Now, note that each integral in (2.13) serves to propagate the
solution of a particular component in a particular direction. These

directions are indicated by the arrows in Fig. 2. We can now
ijterpret Fig. 2 as follows. In Fig. 2, we see an incident wave,
i entering at the top, which has transverse oscillations, e
This wave interacts with the q's and creates out of this interaction
two different waves, k and *, each of which propagates off in
its own characteristic directiAn. So (2.12) is indeed a scattering
problem, in that one wave is partially converted (scattered) into
two others.

But what about the final profiles of 44 (Xk) and '(Xi+Xk)?
Well, as one would suspect, each of these final profil s, when
Fourier transformed, defines a reflection coefficient, which depends
on the exact structure of the potentials inside the circular region.
Similarly, the final profile of *(Xi) defines a transmission
coefficient. So, we do have the potentials being mapped into
reflection coefficients, as in 1D-IST. From the three solutions,
* i, *J, and *k, defined by (2.14)-(2.16), we therefore have two
reflection coefficients per solution, for a total of six reflection
coefficients. But, we have only three profiles, so that three of
these six reflection coefficients are not independent, but are
dependent on the other three.

Furthermore, (2.13) is not the only choice for a solution to
(2.12), since one could choose different and the opposite limits
for the integrals in (2.13). For example, changing the integral
in (2.13a) to be from - to Xk, corresponds in Fig. 2 to reversing
the direction of the corresponding reflected wave. In all, since
there are 8 independent ways of choosing the limits on the integrals
in (2.13), and since there are three independent solutions per
choice, we have a total of 24 independent fundamental solutions, and
therefore 48 different reflection coefficients, of which only three
are independent. Contrast this with the 1D-IST case, where we have
only 4 fundamental solutions [Ablowitz et al, 1974], ,,0, and *,
and only four different reflection coefficients [Ablowitz et al,
1974], b/a, b/i, 'E/a, and 1/-i, of which at most, two of the latter
are independent.

So, 3D-IST has a much larger redundancy in it than does 1D-IST,

with the reason for this arising from the larger number of directions
which one could use for the incident beam, and the reflected beams.
Furthermore, when one starts considering the number of possible
forms for the inverse scattering equations themselves, we again find
a similar large number, whereas in 1D-IST, there are only two
possible forms: inversion about +-, or about --. The methods 2

required to obtain the 3D inverse scattering equations are detailed
in Kaup [1979] and due to the complexity of the algebra
involved, we shall not reproduce those results here. Instead we
shall simply outline them, and also contrast them with 1D-IST.
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First, we note that the t-dependence of the reflection coef-
ficient can be determined in the standard manner. We use the three

equations in (2.8) which corresponds to evolving the *'s off of the
t - 0 plane, and simply evaluate them for X ± and/or Xk - ± - ,

whence the t-evolution of the reflection coefficients will follow,
since the potentials are assumed to vanish at these limits. Second,

one finds that each fundamental solution of (2.12), where the
incident wave is represented as in (2.14)-(2.16), has a particular
analytic property with respect to C. For example, the fundamental
solution 4i, defined by (2.13) and (2.14) is in general only
bounded on the real r-axis, whereas J(pK) is analytic in the lower-
(upper-)half r-plane. Similarly, each of the 24 fundamental

solutions has a definite analytical property, with respect to .

Furthermore, each fundamental solution can be related to almost any
other set of three fundamental solutions, via the various transmis-
sion and reflection coefficients, since only three of the 24 funda-
mental solutions are linearly independent. From this, one can
construct "linear integral dispersion relations" whereby one
fundamental solution is given in terms of an inhomogeneous part and
an integral in the complex s-plane, over products of reflection
coefficients and other fundamei al solutions. Once these are
constructed, one has, in effect, solved the inverse scattering
problem, because all that is left is simply "doing the algebra".

So far, everything which has been described above, has very
closely paralleled ID-IST, and has differed really only in the
dimensionality, larger number of solutions, etc. But, it is at
the point of constructing the linear integral dispersion relations,
that one will note a distinct difference between 3D-IST and 1D-IST.

In lD-IST, the poles of the transmission coefficient, a-l(),
in the upper half C-plane, define the bound-state eigenvalues

[Ablowitz et al, 1974], each one of which gives rise to a soliton.
But in this 3D-IST, every transmission coefficient is bounded, and
therefore no poles occur, and therefore no solitons exist, as we
know them from 1D-IST. The inverse scattering is done completely
in terms of the continuous spectrum, and only in terms of the

continuous spectrum. No bound states ever occur.

But, in 1D-IST, one property of the inverse scattering equations
is that when the continuous spectrum is absent, closed form

solutions exist, which are the N-soliton solutions. This occurs
because the kernels in the integral equations (which are the
inverse scattering equations) become what is called "separable".
So, in 1D-IST, one could equivalently define solitons as being the
separable solutions of the IST equations. So, when one considers
the 3D-IST equations, quite surprising, we find that these equations
can possess separable kernels, and the corresponding solutions are
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localized! And, one may also construct the analogy of the ID N-
soliton solution, except that these 3D objects are not quite
solitons. And to distinguish them, we shall call these 3D objects
"lumps". These 3D "lump solutions" we shall now discuss from a
different point of view in the next section.

III. THE THREE DIMENSIONAL BACKLUND TRANSFORMATION

As one will recall, one of the more general means of construc-
ting N-soliton solutions in one-dimension, is to use the BAcklund
transformation, whereby one starts with a trivial zero solution, and
generates nontrivial solutions. Following a suggestion by
Jim Corones [19761, simply applying a general technique, I have
found that a Bicklund transformation does exist for the 3D-3WRI,(which is completely integrable, and is

qj qj + Iiik/D %(3.a)

where

aiD - -YTii 1  , (3.1b)

and each above equation is cyclic in (i,j,k). In (3.la), qA is an
initial known solution, and *i is a solution of (2.8) for t e known
q's. By direct substitution, one may verify that if (2.8), (2.9)
and (3.1b) is true, then j will satisfy (2.9), being therefore a
new solution. From (2.8), one may easily show that (3.1b) is
integrable.

To see what kind of solutions we can generate with (3.1), just
set qi 0 O, whence it follows from (2.8) that *j gj(Xj) and

1
qj gi(xi)gk(xk), (3.2a)

where

D 1 +y 1G1 +y 2 G2 +y 3G3 , (3.2b)

G (Xt)  - i(u)du (3.3)

The solution (3.2) is called a "l-lump" solution.
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A trivial 1-lump solution is when one of the g's is chosen to
be zero. We take &1 - 0, then it follows that q2 - 0 - q3 , while

8j 392 (3.4)

" +*y2 G2 +y 3 G3

where in (3.4), gi is a function only of Xi. Now, (3.4) is not a

soliton solution as we know from iD-IST. First, we note that its
shape and amplitude is quite arbitrary. Except for the denominator,

it can be any product of any function of the other two characteristic
coordinates. Note that it is independent of X1, which must be so,
for a free envelope to exist. Thus in characteristic coordinate
space, (3.4) describes a "tube" parallel to the Xl-axis, when 92
and 13 are localized.

Now, these N-lump solutions can be constructed from a Bicklund
transformation, as we have seen here for the 1-lump solution. But,
in 1D-IST, the BIcklund transformation is a well-known and well-used

procedure for generating ID N-soliton solutions. So, one could say
that these lump solutions are the extension of ID solitons, and at

the same time one could say that they are not. The choice that one
takes will depend on one's point of view. But, the main point to
be recognized is that these lump solutions are similar to and also

are different from solitons. Thus they are indeed a different
quantity, and to emphasize this, we have chosen to use the word
"lump" to describe them.

Now, the general 1-lump solution, (3.2) although simple, is

found to contain in it a breadth of information and examples, which
is remarkable. With just this one solution, we can generate and

exhibit such effects as pulse decay, upconversion, and explosive
instabilities, all with one simple mathematical solution (Kaup, 1981).

The detailed analysis of (3.2) is carried out in Kaup [1981], so what
I shall do here is to present the results, and hopefully enough of
the mathematics to convince you that these results are true and
reasonable. The first thing which must be done is to parameterize

the solutions (3.2) in some manner. We choose to use the standard
concept of "action" and define the initial and final action (a) of
an envelope by

a dX dX qq (3.5)
a

The relation that the above integral has to the corresponding
integral in space-time, is discussed in Kaup [1981]. Here, we shall

simply coment that for the initial and final pulses (but not neces-
sarily for in-between times) the above integral does reduce to the
usual definition of action.
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Now, with the definition of initial and final actions by (3.5),
one then finds that the specification of the three initial actions
either i) uniquely determine all constants in (3.2), except for
trivial phase factors, or ii) no solution of (3.2) exists for those
initial actions. In the latter case, usually the 1-lump solution
was just not sufficiently general to represent such a solution.
So, there are some interaction regimes which are inaccessible to
the 1-lump solution. But at the same time, we find that a very
large interaction regime is accessible to this solution.

Of course, if one can determine an initial solution from the
three initial actions, it follows that the final actions can be
given as functions of the initial actions. This is the manner in
which we shall discuss our results. We input a certain amount of
action into each of the three "channels", or initial envelopes. Note
that we say nothing about the shape of the profile. All we do is to
specify a global quantity, the "action". Then after the interaction,
the initial action will be redistributed among the three envelopes.
We shall usually graph one of these final actions vs. two of the
initial actions.

The results that one finds are as follows. For the positive
energy case, one of the y's must differ in sign from the other two,
which we shall choose to be y, - _Y2 - -Y31 where w, is then the
largest frequency. The decay case is one of the possible solutions
in this case, and is pictorially represented in Fig. 3 as a function
of space and time. The large bottom cylindrically shaped object
corresponds to an initially intense high frequency envelope, and the
lower dashed lines correspond to small amounts of the other waves,
on a collision course with the high frequency envelope. These three
waves collide and interact in the middle of the graph, and during
the interaction, action is lost by the high frequency envelope
(it decays in strength), and reappears in the low frequency waves.
Thus, by this interaction, high frequency waves can decay into lower
frequency waves, with the exact amount of loss of action by the high
frequency envelope depending on the initial actions. In Fig. 4, I
have graphed the final action of the high frequency envelope vs.
the initial actions for a20 a a30 - One should note that, for a20
fixed, as al0 is increased from zero, at first nothing happens
since alf o al0 . But soon, a critical threshold is reached after
which alf remains at some constant value, with all iction beyond this
value being lost into the two lower frequency daughter waves.

The other positive energy solution is just the~ time reversal

of the above decay interaction. In this case, simply reverse the
direction of time in Fig. 3, and you will see two low frequency
waves coming together on a collision course (also with a small
amount of the high-frequency wave present), which them interact,
surrendering action to the high frequency w'ave, which emerges
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yN

q3

Fig. 1. The decay solution of the 3D-3WRI 1-lump solution. As

shown, qj is the high frequency envelope, and is very
intense. In the center region, a very small amount of q2
and q3 collides with qj, causing a decay of qi into q.
and q3 ,
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Fig. 4. The decay case. An initially intense high frequency pump

of action al0 will decay to a final action alf, depending
on the initial actions (a2 0 = a30 ) in the daughter waves.
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Fig. 6. The negative energy case for a20 a30, When the initial
actions lie to the right and above the curve, the solution
will always become singular in a finite time. All solu-
tions under the curve are stable.
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enhanced. This process is called upconversion, whereby energy
passes from low frequency waves up into a higher frequency wave. The
general results in this case for the l-lump solution is demonstrated
in Fig. 5. Here one should note agaia the threshold phenomena,
whereby for fixed al0 , alf does not change until a2 0 passes a
critical value, beyond which alf increases linearly with a2 0.

The last case of a 1-lump solution is what is known as an
explosive instability, which involves negative energy waves. In
this case, y, = 2 Y3 = -1, and as one can readily see, the
denominator in (3.2a) may now become zero. When this happens, the
solution becomes singular in a finite time, with each envelope
having a singularity. The range of initial actions, for a2 0 , a3 0 ,
in which this instability occurs is shown in Fig. 6. Briefly,

Fig. 6 simply shows that if a negative energy solution is to remain

nonsingular, one must keep the initial actions within certain limits.

Of course, one is not assured that these one-lump solutions
are typical of 3D interactions since the solution is, in a sense,
quite special. However, comparing these solutions with 1D solutions,
with the linear limit, and with what one expects to occur in 3D,
one is lead to strongly suspect that these 1-lump solutions do indeed,
at least qualitatively, represent the typical 3D-3WRI. However, at
the moment, this is only a conjecture, which shall have to wait for
further results for verification.
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Monodromy- and Spectrum-Preserving Deformations I

Hermann Flaschka* and Alan C. Newell
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Abstract. A method for solving certain nonlinear ordinary and partial
differential equations is developed. The central idea is to study monodromy
preserving deformations of linear ordinary differential equations with regular
and irregular singular points. The connections with isospectral deformations
and with classical and recent work on monodromy preserving deformations
are discussed. Specific new results include the reduction of the general initial
value problem for the Painleve equations of the second type and a special case
of the third type to a system of linear singular integral equations. Several
classes of solutions are discussed, and in particular the general expression for
rational solutions for the second Painleve equation family is shown to be

d
-d -ln(Ai.A-), where J. and ,. are determinants. We also demonstrate

that each of these equations is an exactly integrable Hamiltonian systemThe
basic ideas presented here are applicable to a broad class of ordinary and
partial differential equations; additional results will be presented in a sequence
of future papers.

1. Introductiom and Outline

This paper is the first in what is planned to be a series of studies on deformations of
linear ordinary differential equations with coefficients rational on a Riemann
surface. The deformations in question preserve the monodromy at singular points
of the linear equation, and this requirement forces the coefficients of the linear
equation to satisfy certain nonlinear ordinary or partial differential equations of
considerable interest. The theory of monodromy-preserving deformations over-
laps the theory of isospectral deformations (i.e.. soliton theory), and indeed one of
our aims will be to understand the connections between these two types of
problems. Applications of the nonlinear equations governing monodromy-
preserving deformations have been discovered in nonlinear waves, statistical
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mechanics and quantum field theory; we shall present some new results along
these lines, and we intend to develop relations between soliton ideas and the
applications mentioned above.

The next section of this paper will describe in considerable detail the history of
relevant work on monodromy-preserving deformations, as well as connections
between different approaches and problems. The paper itself deals primarily with
two representative examples. The first of these is the system

v -i(4Q2 +x+2q2)v I +(4q- 2ir+v/ V2

v2, =(4q + 2ir + v/C)v, + i(4C2 + x + 2q)v 2 ,

with x, q, r, v constant in ;. The singular points of(1.1) are at = X (irregular) and
C=O (regular) if v*O. A deformation of (1.1) is monodromy-preserving if the
Stokes multipliers associated with formal solutions about = x, the monodromy
matrix about C = 0, and the matrix connecting fundamental solutions at C = 0 and
x are unchanged (when x is varied, and q, r change as functions of x). For this it is
necessary and sufficient that (as function of x) r-q, and

q. = 2q3 + xq- v. (1.2)

(1.2) is the second Painleve equation [1]. By posing an irregular-singular Riemann-
Hilbert problem, we exploit the connection with (1.1) to reduce (1.2) to an
equivalent system of linear singular integral equations. In a special case, this
reproduces the solution, due to Ablowitz and Segur, of (1.2) by a Marchenko
integral equation [2]. Other special cases yield the rational or Airy-function
solutions of (1.2) discovered by Airault [3], but this time by procedures very
familiar from the inverse-scattering derivation of multisoliton formulae.

The second and somewhat more complicated example, whose study we begin
in this paper, is afforded by the system

V,,=(-ix+ .coshu V, +(-U + sinhu vz
T 2 y 1.3)

V2  (1.. sinhu V1+ (ix- -icoshu V2.
This system has irregular singular points at C=0, oo. The deformation equation is

equivalent to a special case of the third Painleve equation,

(xux),, - 4 sinh u. (1.4)

This equation and its linearization via the Riemann-Hilbert problem for (1.3)
provide a link between the inverse scattering transform and the extensive work of
Barouch-McCoy-Tracy-Wu [4-6] on the Ising model and of Sato et al. [7] on
monodromy-preserving deformations and quantum field theory.

Our principal aims in this first paper are:
1. To point out relations between mondromy - and spectrum - preserving

deformations.
2. To introduce a new method for solving the initial value problem for

equations such as (1.2) and (1.4) which can be written as monodromy preserving
deformations.



Monodromy. and Spectrum-Preserving Deformations 67

3. To point out that both (1.2) and (1.4) are exactly integrable Hamiltonian
systems.

4. To discuss the connections between our method, the inverse scattering
transform and the novel ideas of Krichever and Novikov for investigating
multiperiodic solutions of soliton equations.

Following a general discussion in Sect. 2, in Sects. 3 and 4 we describe in detail
the mapping from the coefficients of the differential equations (1. 1) and (1.3) to the
monodromy data and prove that this data is independent of x. In each case we also
derive the inverse mapping which allows one to reconstruct the solutions to (1.1)
and (1.3) (and therefore both the equations they satisfy and the coefficients in these
equations, the quantities of interest) from a knowledge of the monodromy data.
The result appears as a set of coupled linear singular integral equations. We
examine several limiting cases and derive some useful formulae for special classes
of solutions, although we have not, as yet, been able to prove the existence and
uniqueness of solutions in the general case.

2. Introduction and Discussion

2A. Deformations

Nonlinear ordinary and partial differential equations do not, in general, admit
explicit solutions, because the solutions of the typical nonlinear equation are so
wildly irregular that they could not possibly be represented by known functions.
Conversely, nonlinear equations with very well-behaved solutions should be
expected to have uncommon properties. One feature shared by many such special
nonlinear equations was discovered towards the end of the 19th century, was
exploited for about forty years and then (apparently) forgotten; quite recently it
has re-emerged in a somewhat different form. This is the observation that
"solvable" nonlinear equations arise as integrability conditions for certain kinds of
deformations of linear equations.

The most recent version of this technique centers on the idea of isospectral
deformation. The best known and most celebrated example involves the

d
2

Schr6dinger operator [8] L T-7 + q(x). One asks, how can one deform the

coefficient q(x) as a function of an additional parameter t, so that the eigenvalues
of L [as operator on L(R), say] do not change? The simplest nontrivial such
deformation is already one of great physical importance: the deformation is
isospectral if q(x, t) satisfies the Korteweg-de Vries equation,

q, - 6qq. + q .. =0. (2.1)

In recent years, studies of isospectral deformations have uncovered many more
nonlinear equations of physical relevance and mathematical interest: the whole
subject appears to be deeply involved with Lie groups and differential and
algebraic geometry.

Another kind of deformation, perhaps not as widely known, is associated with
the monodromy group of Fuchsian differential equations. Consider a (matrix)

) .
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system of ordinary differential equations,

r Y 1 -- (2.2)

where the Ai are constant m x m matrices. The fundamental solution of (2.2) is (in
general) a multi-valued function of complex . If C moves on a path IC-aI=e
encircling a, the solution Y(a +e) will change into Y(a +ee'")= Y which is a
matrix whose rows are linear combinations of the rows of Y(C),

k'(o = Mj (o. -(2.3)

Mi is the mono'dromy matrix at a. The deformation problem is: how can one
change the Ai, as function of the poles a, so that the monodromy matrices M
remain fixed? The simplest nontrivial example is again of considerable interest.
The linear Eq. (2.2) is taken to be a 2 x 2 system, with three poles fixed at 0, 1, 00,
and one pole r subject to variation. A priori, there are twelve adjustable entries in
the coefficient matrices AJ(j - ,2, 3), but they can all be expressed in terms of a
single function z(r) which satisfies the equation £9, 18]

1 1 11 1 h z4z -) (z - )Z"+ y+ _--- z +-Z-i+ ( -2 r-)

{, fl2+ 7 (z-r)! =0. (2.4)

The frightening Eq. (2.4) is the most general 2nd order equation

z" = R(r, z, z')

with R rational in z, z' and analytic in r, which has the property: the location of
any algebraic, logarithmic, or essential singularity of its solutions is independent of
the initial conditions.

Equations with this property were studied in exhaustive (and exhausting) detail
by Painlevi and Gambier (1]. There are fifty canonical types, which include linear
equations such as z'= z, equations solved by elliptic functions, such as

z"=2z 3+cz-v, (2.51

and six equation types whose general solutions can be proved not to be expressible
in terms of the basic special functions (except for isolated cases, see Sect. 3 below).
These six equations are called Painlevi equations, and their solutions Painleve
transcendents. These equations are, as the summary above indicates, distinguished
among non-classical ordinary differential equations of the form (2.4) in that the
nonpolar singularities of their solutions can be predicted from the equation alone.
Equations (1.2) and (1.4), which we study in this paper, fall into this class E(1.4)
only after the change of variables f-ei]. We shall describe later some of the
important applications of the Painlev6 transcendents.

A third kind of deformation involves the properties of solutions of ordinary
differential equations near irregular singular points. This, indeed, will be the main
concern of the present paper, and for the moment we provide a brief description

' • •• • • Il P i i | | l II"""YOM
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only. Consider the system

Y' A(C) Y, (2.6)

where the (matrix) function A is polynomial in . = is an irregular singular
point, and typically only formal solutiogs

,(C) - e") C{ + +cC - I + cC - 2 + ... )}, (2.7)

are available near o. A formal series such as (2.7) is, in fact, asymptotic to a true
solution Y in certain sectors S in the complex C-plane, and one may have

Yj - in Si

Y-' in Sk

for different true solutions Y, Y in different sectors S,, S. The discontinuity of
asymptotic expansions is known as the Stokes phenomenon, and the matrices which
connect the different true solutions with fixed asymptotic expansions in the
various sectors are called Stokes multipliers, Yj, = YMj. The deformation problem
we pose is: to change the coefficients in (2.6) so that the Stokes multipliers Mkj
remain constant.

The immediate object of our paper is to study this deformation problem for a
particular 2 x 2 system which leads to the second Painleve equation

q"=2q3 +xq-v (2.8)

as integrability condition. (2.8) is a nonautonomous version of the elliptic function
Eq. (2.5). We will reduce this nonlinear ordinary differential equation to a system
of linear integral equations. and in the process we will recover some known special
solutions. There are, however, deep and entirely unexplored connections amongst
these various types of deformation problems, and equally interesting relations
between monodromy-preserving deformations and questions in statistical me-
chanics, quantum field theory, and wave dynamics. We plan to address some of
these topics in later papers, and want to detail in this overall introduction the
ingredients of what we think will eventually become a beautiful and useful
complement to current soliton theory.

2B. Applications
Painlev6 transcendents are encountered in several important physical problems, of
which we describe two. In one of these, the connection with solitons (more
precisely, with isospectral deformations) is evident: In the other, there are certain
analogies with soliton theory which first stimulated our interest. We now outline
the relevant facts.

I. Self-Similar Solutions of Wave Equations. Although the following considerations
apply to many soliton equations, we restrict ourselves to the modified Korteweg-
deVries (MKdV) equation, in the form

q,_ 6q~q, + q.. -0. (2.9)
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If q(x, t) solves (2.9), then so does

4(X, t) = flq(#.x, p3tp

for any P. A solution which is invariant under this scaling is called self-similar:
q(x, t) - (x, t). It follows that for such q,

q(x,t)=(3t)- V3f(x(3t)- '13). (2.10)

The function f() satisfies

f"=2f3 +f-v (2.11)

(v is an arbitrary integration constant), as can be seen by substitution of (2.10) into
(2.9). (2.11) is the second Painleve equation. Now, it is known that MKdV can be
integrated by the inverse-scattering problem for

v1 +iCv1 =qv2  (2.12)
V2.- iv 2 =qv 1

with the t-evolution of the eigenfunctions governed by

v,=(-4iC - 2iq2C)vI +(4q+2iCq-q.+ 2q)v, (213)
v, =(4Q1q-2iCq.-q,, +2q 1)v +(4iC' +2iq2')v 2 .

For the self-similar solution (2.10), the t equation is in a sense redundant, since
q(x,t) is known for all t once it is given for t= 1/3, say (q(x, 1/3)=f(x)). This
observation can be put to use in two ways.

Ablowitz and Segur [10] in their analysis of the asymptotic behavior of
solutions of the KdV equation were led to the following procedure (described here
for MKdV). Apply the usual inverse method for MKdV up to the Marchenko
equation by which q(x, t) is determined from the scattering data. At that stage,
assume q&x, t) to be self-similar, and observe that t can be scaled out of the
Marchenko equation altogether. This leads to the Fredholm equation,

K,(x~y).eAi(X+2) ef K,(x,s)Ai(5-Y-)ds

I ( K0 2 2.12 
(2.14)

and one recovers the Painlev6 transcendent f(x) by

f(x) K(x,x). (2.15)

It is a consequence of the scaling invariance of the Marchenko equation that the
reflection coefficient rI) has the special form

r(O,,, e suC'3,  (2.16)

The Fourier transform of R(C) is the kernel of (2.14). which explains the occurrence
of the Airy function. This method produces the unique solution of (2.11) which
satisfies

J x). QAi(x), x-. +X

nae
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(Hastings and McLeod (11]). More recently, Ablowitz et aL [12] have shown how
to bypass the t-evolution in linearizing (2.11) and similar equations for solutions
which decay at + 3. This is more satisfactory, since scattering theory is not really
applicable for potentials such as f(x) which have poles, or at least decay slowly at
+ or -ao.

It is also possible to use the scaling invariance directly on the t-equation (2.13).
If Ylx,t, ) solves (2.12), (2.13), then so does vOx, 0 3t, 1 1) for the potential i.

Define, in the case of self-similar q,

then

v(x, t, )=w(x(3t- 113, (3)1;3).

Hence

=-(3t)-" w +(33t) 2 w3

aw

and upon using the x-equation (2.12) to eliminate -, one can rewrite (2.13) as

follows "we replace x(3t)- ' 3 by x, and C(3)"I by J:
w1 = -i(4C 2 +x+2f2 )w +(4(f+2if')w, (217)

w24=(4,f-2if')w, +i(4Q1 +x+2f2 )w2 .

This is coupled to (2.12), rewritten now without use of t:

W1 + iwl = fw 2  (2.18)

W2 - i w 2= fw 1 •

If one imagines f(x) to decay so rapidly at ± oc that scattering theory can be
applied, one looks at a solution of (2.18) which satisfies

X (0)~ !oe , ----0

At + o,

w(x, ) , a(C) (o) e'C + b(C) (O) eitz

and it follows from (2.17) that

a(C)

Inverse scattering then reproduces the results of Ablowitz and Segur. There is a
conceptual question, which leads to the main point of our paper. In MKdV theory,
the x-equation (2.12) is basic. It is deformed in t in a special way; namely, so that
the transmission coefficient a(f- I is independent of t. The t-evolution (2.13) is one
possible expression of this requirement, and MKdV is the integrability condition
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for these two systems. For self-similar solutions, however, there is no t in (2.18), so
what is being deformed? As we explain in this paper, it is now the C-equation (2.17)
(alias t-evolution) which is basic. Vary x in (2.17), and change the remaining
coefficients as functions of x so that the Stokes multipliers of (2.17) are independent
of x. The original x-equation (2.18) describes the appropriate evolution of the
solutions of (2.17) in x, and the Painlevi equation (2.11) with v =O is the integrability
condition. In this way an isospectral deformation leads, for self-similar solutions, to
monodromy-preserving deformations associated with the irregular singular point.

We also want to point out that whereas the self-similar solutions of integrable

evolution equations appear to give solvable nonautonomous ordinary differential
equations, there are many members of the latter class which do not result from
self-similar limits of the former. (See Example 2, Appendix 1.)

1I. Correlation Functions of the Ising Model. A most remarkable occurrence of
Painlev6 transcendents was discovered by Barouch et al. [4] and was incorporated
into a powerful general framework by Sato et al. [7]. The interest here is in
computing the k-point correlation functions of the rectangular Ising model in the
scaling limit. First we recall some terminology about the Ising model. A spin
variable a, = ± 1 is attached to each point of an M x N lattice. The energy E(a)
corresoonding to a configuration a {c, is

N N - M N

..j=J M eG+. IRX m.-q1~-- [ Ial .1--| ri ll

(periodic boundary conditions). The partition function is
1f

' ZM= e -0M, I P = -I
a

(summed over all possible a), and the k-point correlation functions are

One is interested in obtaining explicit formulae for these quantities as M, N-. 0. It
is well known that the partition ftinction is not analytic at some critical ,
corresponding to a critical temperature T. The scaling limit is a continuum limit of
the lattice as T--,.T1 ['13]. The 2-point correlation functions and their scaling
limits were first evaluated and studied in [4]. Of particular interest for us is the fact
that the 2-point functions in the scaling limit admit closed expressions in terms of
solutions of the third Painlevi equation (see the survey by Tracy [13]). Without
invoking any deformation ideas, Wu et al. derived series expansions for the

correlation functions; certain of these expansions for k = 2 are equivalent to the
Neumann series subsequently studied by Ablowitz et al. [12], and identical to
iterative solutions obtained from our singular integral equations (see Sect. 4
below).

The deformation idea was introduced into this circle of problems by Sato et al.
[7]. Their work presents a remarkable synthesis of apparently unrelated fields: the
theory of rotations in Clifford algebras, monodromy-preserving deformations, and

.,-. ., .--
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quantum field theory. Certain of their discoveries show a particularly strong
similarity to facts familiar from inverse-scattering theory and lead directly into the
investigations of the present paper.

We present a brief sketch of the basic deformation problem of [7] (algebraic
details of the connection are given in Appendix III). [7 deals with solutions of the

two-dimensional Dirac equation for w =W,

-- Mw , a-w=.mw_, m>0, (2.19)

which: are multivalued, having root type branch points at 2n points a, ... , ,

w, a,+ e2x(z - a), -, + e _ )

= -e - 2x4 wqZ , Z-), (2.20)

satisfy certain growth conditions at (a,a), v=l,..., k and decay as e 2f
m t

j as
Iz- . For n-l. the only solution is a modified Bessel function of the second
kind. In general, the space W" of such solutions is k dimensional [7]. Let

" )

W =() =(wjw)T(2.21)
\ w(k,

be a basis (appropriately normalized) of W. There is a differential equation
satisfied by W,

M'W = (B -Z +A - + E W, (2.22)

where M,1=z- Fa+I(1 + and B, 9, E are constant matrices whichwher M r Z - + 0 - 1

depend on 1,, a, and 5, v = 1, ..., k. Equation (2.22) together with (2.19) completely
characterizes the space Wk. One now asks: how do the matrices in (2.22) change as
functions of the branch points a , ii? Because these matrices characterize W*, which
in turn is the space'of solutions determined by the monodromy requirement (2.20),
this question is about deformations of (2.19), (2.22) preserving the root mono-
dromy and growth conditions. The solutions of the deformation equations lead to
closed expressions for the k-point functions. for k = 2, these reduce to the formulae
mentioned above involving the third Painlevi transcendent. In [7], Eq. (3.3.39),
Sat5 et al. point out that a formal Laplace transform

-du / V " \ 1;1- )

converts (2.19), (2.22) into

(u d +mAu-G-'miGu-t'+F k(u)-0. (2.23)

.
-
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This again produces a system of ordinary differential equations with poly-
nomial coefficients, with irregular singular points at u =0, 00. These equations
involve the a,, a, and other parameters. We may ask: how should these other
parameters change as functions of aj, a, if the Stokes multipliers of (2-23) are to
remain constant? For k = 1, the system of deformation equations is trivial, and for
k =2 one recovers the sinh-Gordon similarity solution (i.e. a special case of
Painlev6 III). The exact connections are given in Appendices I and III.

2C. Classical Work

The work of Sat6 et al. was in part stimulated by, and then re-applied to, some
classical problems of deformation theory. We have already mentioned the work of
Fuchs [9] on Painlev6 VI as a deformation equation. The general system of
deformation equations for (2.2) was derived by Schlesinger [14]:

,AJ [AA'] (2.24)

8a1  aj- ai

j= 1 A 0

[7, Part II] details a constructive solution method for (2.24) based on a
specialization of the deformation theory of the Dirac equation (Sect. B, above).
Equation (2.24), of course, relates to monodromy groups of systems whose
singular points are all regular. The question of irregular singular points was also
taken up, by Gamier [15], but (as far as we can tell) on a purely formal level, by
analogy with results of Fuchs on the regular-singular case. Gamier considers, in
connection with Painlev6 II, the 2nd order equation for y(C),

YCC Y [akc + j( 3/4  + Y-(2.25)

He then asks: how can one complement (2.25) by an equation

y.=Ay+Byc (2.26)

with A, B rational in C, so that (2.25), (2.26) is an integrable system (in the sense:
y.x , y,)? If n-0 in (225) and Ao =;-, it turns out that one possible choice for
(2.26) leads to Painlev6 11 as the integrability condition,

A"-2A3 + xA-v.

There has apparently been no discussion, so far, of the deformation theory
underlying (2.25), (2.26), even though the work of Birkhoff [16,17] presents most
of the necessary ideas relating to the monodromy concept for an irregular singular
point'. Starting from the requirement that the Stokes multipliers of (2.25) [or
rather, of(l.l)] be independent of x, we will prove (in Sect. 3) that an equation like
(2.26), with rational A, B, must be satisfied.

I After this work was completed. we learned of work of K. Ueno on this question (see Sect. 5)

... .. ... ... __ _ 7 "4- t
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2D. Further Connections Between Isospectral and Monodromy-Preserving
Deformations

Of the three deformation problems listed in Sect. 2A, only two have been shown to
be related up to this point of our discussion.

isospectral

3 1 setksimlar solutions

2

regular monodromy - irregular monodromy

It is probably not surprising that connection 2 can be established. If one coalesces
two or more regular singular points of an ordinary differential equation, one
expects to get an irregular one. Indeed, Gamier [15] states (without details) that
an equation such as (2.25) is obtained from one with all singular points regular by
confluence, with the corresponding deformation equations passing into each other.
This amounts to the observation of Painlev6 (see, e.g. [1]) that the 6th equation,
(2.4), (which is the integrability condition for a regular monodromy-preserving
deformation) yields all other Painlev equations I-V (associated with irregular
monodromy) by appropriate limiting procedures. Yet, the geometric content of
this statement is still very obscure.

Much more surprising is connection 3, again due in large part to Gamier [18].
It is fairly well known (Davis [19]) that the change of variables

converts Painlev6 II into
§2 ! 1 g 2v

g"=2g 3 - 2g.

This is solvable in terms of elliptic functions. Indeed, the solutions of Painlev6 II
are "asymptotically elliptic" (much as Bessel functions are asymptotically trigono-
metric). Gamier takes the general Schlesinger system (2.24), lets the a,-- o so that
a' ,' (fixed) and sets a logc, = r,; then (2.24) formally becomes
a0 1

aAJ [A', AJ

(2.27)

j. I a
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This is now an autonomous system, which Gamier integrates in terms of Abelian
functions. It is remarkable that his basic lemma says that the eigenvalues of the
matrix

are unchanged when the AJ solve (2.27) - a typical isospectral flow. One special
case singled out (and solved) by Gamier is the system

-( (2.28)

which is now known [20, 21] to contain the finite-gap KdV theory as special case.
It was, in fact, discovered some 60 years earlier by C. Neumann as describing
uncoupled harmonic oscillators constrained to move on a sphere.

Gamier's system (2.27) covers a large class of the integrable periodic problems
solvable.by inverse spectral methods. There are other known periodic isospectral
flows contained in (2.27). We will discuss these in tfie next paper, in which we will
also re-interpret Gamier's method in the language of isospectral flows.

3. The General Solution of Painle H

3A. Outline

'Ve have already mentioned (and full details are given in Appendix I) that r=q
and

q.,=2q3 +xq-v (3.1)

are the integrability conditions of the Eqs. (3.2) and (3.3) below

v,,=(-4iC2-i(x + 2q))v, + (gq+ v -2ir)v2. (3.2a)

v2C= 9 q+ V _ 2ir) D, + (4iC + i(x + 2i)2,23.b

v,= -iCv +qv 2 , (3.3a)

v2. =qv I + iv 2. (3.3b)

The method of isospectral deformation, or IST, concentrates its principal attention
on (3.3). In order to implement the method, one must have some information on q
as function of x; for example, that it decays to zero or a constant as x-- o and
also that certain moments exist. If

(1+jx)lqldx<oc, (3.4)
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one can define the fundamental solution matrices O(x,) and IP(x,C) by the
asymptotic properties

e0) as x--,- Oo (3.5a)

and

(x,C)-*(x,C as x-,+co. (3.5b)

Condition (3.4) ensures that certain analyticity properties hold. and in particular
that the scattering matrix A(C) -' 7 is defined with its diagonal entries
admitting analytic extension. The ; behavior of A(C) (or the (;, t) behavior of A (C, r)
- see [33]) is inferred from (3.2)

For the class of equations and solutions we wish to discuss, condition (3.4) does
not hold. Therefore, we propose a new method, in which one focuses central
attention on Eq. (3.2) and uses (3.3) as an auxiliary equation. We note straightaway
that (3.2) is much simpler: the coefficients are polynomials in the independent
variable C. The points C = 0 and C = oo are regular and irregular singular points of
the equation, respectively, and the solution matrix is a meromorphic function of ;
on an appropriate Riemann surface. If v is an integer, the solution matrix is
meromorphic in the finite complex ; plane; otherwise, one must introduce the
multisheeted Riemann surface of C '.I

The steps in the method exactly parallel the steps used in IST. First, at a given
value of x, where q and q, are given, one determines various properties of the
solution matrix connected with the singular points C = 0 and C = X of the equation.
Around the singular point Cf= o, one has the Stokes phenomenon: the analytic
continuation of a solution from one sector to another does not have as its
asymptotic expansion, as C -+ oo in the new sector, the analytic continuation of the
asymptotic expansion in the first sector. If one identifies a solution matrix in each
of the sectors abutting infinity by a fixed asymptotic behavior, then these solution,
will not evolve from one sector to another in a continuous fashion, but will be
connected by Stokes multiplier matrices. The entries of these Stokes multiplier
matrices are the Stokes multipliers and are part of the characteristic data of the
singular point. The other data needed at C = o are the coefficients of the
polynomial in the exponent of the formal asymptotic expansion of the fundamen-
tal solution matrix. If the rank of the irregular singular point is r, then the
components of the solution vector will have asymptotic expansions of the form

exp 1+ ( (3.6)

In tMe case under discussion, r - 3, Co3 = 4i/3, co2 =0, co, - ix, 1 =0. One also needs
to know how the solution changes as the point C = o is encircled; does it return to
the value in the first sector? This can be determined by examining the behavior of
the solution in the neighborhood of the regular singular point. Thus, one
introduces the monodromy matrix at C-=f0. Finally, one must specify the
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connection matrix between canonical fundamental solution matrices at =0 and
3c o. The characteristic parameters at xc (the Stokes multiplier matrices and

{coj, I), the monodromy matrix at C=0. and the connection matrix are together
called the transform data.

The second step in the method is crucial. We ask: how do the transform data
evolve as the parameters w i in (3.6) change? From (3.3), we will show that their
evolution is trivial: they are constant.

Therefore, the third step is to reconstruct the coefficients r and q in (3.2) and
hence q and q. at any x. This is achieved by deriving linear singular integral
equations for the columns of the fundamental solution matrix.

We now discuss these steps in detail in connection with the system (3.1H-3.3).

3B. The Direcr Transform

A formal asymptotic analysis of (3.2) at C= x will show that the two linearly
independent solutions have the expansions

I q2 - q2 - q'+2vq)+.
Mol(C x!~ oO _e- 3-i | jZ (3.6a)

iq +"bX)a -,() e c 3 +  "'" C. (3.6b)

I+_(q'_xq-q+2vq)+

Since our concern is with (3.1), we will henceforth write q, for r. If (3.1) holds,

qX-xq 2 -q'+2vq= - fq 2dx+const and if q, q. tend to zero sufficiently rapidly

as x--oo, this coefficient is simply f q2 dx. The growth or decay of the two formal

asymptotic expansions r' t t(",x) and rp2()( ,x) as ;--+cc is determined by the
exponential factor e±4'i44 3 ; the former (latter) series is dominant (recessive),
meaning exponentially growing (decaying), as ;-oo in the sectors S1, S3 and 5,

shown in Fig. 1 below, and recessive (dominant) in the sectors S 2, $4, S,

S = ;j >q, some e, U1)ir ,argC<2}.

The initial lines of the sectors Sj are called the anti-Stokes lines. The lines on which
the solutions are maximally dominant or recessive (in this case n/6+ j/3,
j = 0, 1 ... , 5) are called the Stokes lines.

Consider the solutions W'pt(C,x) and Wt,2(C,x) of (3.2) which in S, have the
asymptotic expansions r"I and rp(21. These solutions will usually be defined by
integral representations following the procedure suggested by Birkhoff [16], or as
solutions to integral equations. Then, by standard methods (steepest descent,
iterative solutions), one can find asymptotic expansions for these solutions in other

tI,J '.-i - - - - -
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sectors and, by taking appropriate linear combinations, one can determine
canonical bases {ipt ( , x) .p,,zt x) t which have the properties

We emphasize that the sector S, includes its initial ray on which the asymptotic
expansions are neutral (neither growing nor decaying). The fundamental matrix
VA, x) will not, in general, be equal to its contiguous neighbors WJ-, and T,'+ 1,
but will be related to them by the Stokes multiplier matrices Ax),

+ 1(, x) = WIA, x)Ajx). (3.8)

Each Aix) is triangular and has the form 1~ a j) or (1 ' ).( \1ajI
The entries ai are called the Stokes multipliers. The reason the matrices are

triangular is this: one can show by analytic continuation of the integral
representation, that a solution which is recessive in S, admits analytic continuation
to SJ+ t and has the same asymptotic expansion (which is now dominant) there
(16]. On the other hand, the dominant solution in a sector S, may need to pick up
a recessive component before it can represent a recessive solution in the
neighboring sector S1  1.

This phenomenon was first discovered by Stokes in 1857 in his analysis of the
Airy function

2a e ikk/3dk"
Ai(x) -1 _ (3.9)

_ _ _ _ _ _ _



80 H. Flaschka and A. C. Newell

Stokes noticed that whereas the asymptotic expansion

Ai(x)- I exp(-Z~x3 2) (3.10)

is valid in the Poincar6 sense in the region JargxJ < ic, it is necessary that a portiont 1
of the solution whose asymptotic behavior is I exp(jx 31 2) be added before

2 r/rx I '

argx reaches n. At which value of argx the extra portion is first added was the
subject of debate, a debate only recently resolved by Olver (22], who pointed out

that uniform bounds on the error were only obtainable for Jargx < p that is, up

to the last Stokes line before argx - 7r. In fact, Stokes himself knew by direct
calculation that the asymptotic representation (3.10) was a poor approximation to

the exact solution, which he computed by power series, once Jargx exceeded L.

For our purposes, it is not crucial to know on which line a given dominant
solution must pick up a multiple of the recessive solution; all we use is that in each
sector. W_ 7F (VI), V11) in the Poincar4 sense of asymptotic expansions (that is,
exponentially small terms can be omitted).

The Stokes multiplier matrices A, have certain symmetry properties which
follow from the symmetry properties of (3.2). If 5F(C,x) is a solution of (3.2), so is

M W(-C,x), where M= (1 0). Thus,

W4 (C, x) Mwpt 21( - , x), , x) = M - , x), p( , x) = M 1 '( - , x) I(3.10a)

as each of these solutions is recessive in the sector indicated by the subscript, and
recessive solutions are uniquely determined by their asymptotic expansion. The
dominant solutions satisfy the same symmetry properties:

V,1C x) MVP( - X), ~)~ ) -~
'(" x) Mv,',] '( - , x). (3.1Ob)

Indeed, since Mitpl(- ,x) goes like ()exp(4i3/3+i~x) on argC=i and is also a

dominant solution in S4, it is exactly tp((C,x). The remaining relations of (3.10b)
follow similarly. If q(x) is real, then if I(C, x) is a sel ! :n so is M W*(C*, x), which
will imply further restrictions on the Stokes multipliers [see (3.26)].

We now write down the fundamental solution matrices gx)=(w7)(;,x),
WI'(C, x)) which have the asymptotic behavior

I --!(q1-.xq-q +2vq)+ ....- iq
2) xC3.11)

r._ i q-- .
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where 0=4i Q/3+iCx. From now on, we drop the subscript on W,

IT1

0;5 ar< no , an pl aex tht(ach)(1, l'), (3.12a

real axis arg C < If P is mer i in te c x 0, (3.12b)

2m t. arg<, v(, x) =u ?u2(s x) smr b re s (3.12c)

M c )+arg(< - -, ) o 73(C)l ) ), (3.12d)

T ;J a r g C < -0, s x -- , x ( 3 .1 2 c )

5 Rt ; a rg C< 2 x ,' 9 W ( C x ) -- = P s( C x ) ( 1 ) 0(0 .1 2 0

'2:argC<- 3 V(c,,:0 - TX,,X)(l i). (3.12g)

We remark now, and prove later, that each lw x) also satisfies the x-equation
(3.3). The fundamental matrix ,(n, x) is defined on a sector including the positive
real axis argo= 2n. If IP is meromorphic in the complex rplane, IF P. However,
multivaluedness cannot be seen from the asymptotic behavior at = 0o, but can be
inferred from the behavior of the solution about C -0. This we shall consider in a
moment. First, however, let us use the symmetry properties (3.10) to show that
d- a, e-b, f- c, For example, since W (2 1 M ( 1+aw(' , one has Mvop(-o

() a (-or ) 1 )Comparison with (3,12c)shows d-fa. The remaining relations follow similarly.
It is straightforward to write down linearly independent solutions of (3.2) near

=,0. When v is not a half integer 22+ , they are of the form

where the normalizing factors et" 'u), u. = q(x) have been introduced in order that

(3.13) satisfy (3.3). The coefficient vectors in (3.13) can always be chosen to

alternate between (1) and ( );this is automatic when v * n, but we impose this

pattern also when v-n. The reader can readily verify that even though v be an
integer, so that the difference 2v of the indicial roots - v and + v is an integer, no

t I
-1 ... _ . . ...... . - . ...... ; ' .. ;::: - ' ..
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2n + I
logarithm terms are needed. When v = - I there will, in general, be logarithm

2'
terms. The two linearly independent solutions will then be 0 2 (Cx) and

0("(C, x) - - ijd 2 '(C, x) In C + 0 ' ,( , x), (3.14)

where (1 
' has the form of C- times a holomorphic function. In (3.14), j is

proportional to the coefficient of C2'- liZ in the series (3.13a). For example, when
V=1

2'

i=2(qz+q2+ X) e'". (.5

Note that the logarithms will disappear if j=O; when v -- this implies

q.+q2 + x .0. (3.16)

(3.16) defines a one-parameter family of solutions of (3.1) for which the second
order Painleve equation reduces to a first order equation (see 3F).

The solutions &M and 421 satisfy the symmetry condition

'- - e" x()-~ nje-'" (), (3.17a)

MO12'(Ce - '*) Me-"1 0121(c). (3.17b)

Also, from (3.14), if ' ,x) is the fundamental matrix ( t1), 02)) in Oarg < 2n,

then

Oe(C*", x) - N, x) J (3.18a)

is a fundamental solution matrix in the sector (2x, 4n). The matrix J is

e- 2*i 2SjZ, (3.18b)

wherej is only nonzero when v is a half integer, in which case e- 2se 2 "= - 1.

We remark now, and prove later, that J is independent of x.
Finally, we specify the relation between FP(C, x) and (,, x) to be

V(C, x)--P(C,x)A, (3.19a)

where

and a6-ly- I since det P =det0= I.

The set of data

T- {a, b,c,a, ,6,a6-y= 1, v,j, w1,( 2, C03,1 } (3.20)

is the transform data; in our case, W3 =4/3, W2 -1-w - ix.
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3C. Some Properties of the TIansform Data.

With the conventions adopted here, the transform data are not uniquely specified
by (3.2), (3.3) because there are some ambiguities in the definitions (3.13), (3.14) of
0. First, we consider this situation when 2v is not an integer. The exponent ± u(x)
in (3.13) is determined only up to an arbitrary constant; a change in this constant
amounts to the multiplication of 0(11 by some k and of 0( by k '. Therefore, a
one-parameter family of connection matrices A is consistent with a normalization
of the type (3.13). One could remedy this by imposing

but as the ambiguity will cause no problems, we shall not insist on such a
condition. When v is an integer, another potential indeterminacy appears because

4any linear combination 0" + kO' will be of the form ; " holomorphic function.

This would, however, violate the ( )patterns imposed on the coefficients in

(3.13), and hence the symmetry (3.17). When v = Ln IL and j *0, there is again one
2

free scaling parameter, and A and the jump i are determined up to this parameter.

2n+I

The only really singular situation arises when v = and j=O. Then the

)2

symmetry condition (3.17) does not distinguish between different linear com-
binations Ox +k ). This case is exceptional in many respects; to illustrate its
peculiar features, we turn now to an analysis of various relations among the
transform data.

Our attitude is always that x and v are given, and that q and r in (3.2) are to be
found. If the transform data do indeed determine those two complex numbers,
then all of a, b, c, j, a, fl, y, 6 should depend on only two quantities in the list. Of
course, %6 - py 1, and there will always be one free parameter in A and j due to
the scaling freedom just discussed. Modulo this indeterminacy, we have the
following results:

2n+2 2n+
(A) As long as Y .n2 or v= 2ih-= and j*0, any two of the three Stokes

multipliers determine all transform data.

(B) If the 2 + d 0 orf determines all remaining transform data (the

second determining constant in this case being t In particular.

Remark. The inverse problem for the exceptional case (B) can be solved - all
systems (3.2) with such transform data can be constructed explicitly.
tWe now prove assertions (A), (B). To this end, we derive two sets of relations
among the transform data; the relations are consistent but carry slightly different
information.(B fvfi- adjfiO rdtrie l eann rnfr aa(h
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First, we note that from (3.19a) and (3.18a)
P( e2' t) -f 'O

and thus

Now choose CeS, (whence Ce2x'eS7 ) and let ICh4 -o both WP(Ce 24') and VF(C) then
tend to the same asymptotic matrices. Hence,

If we write

then

AG 2 2=j- 'A. (3.22)

(3.22) does not use the symmetry (3.17) and so misses some inforration. Thus,

we derive a second set of relations. In (3.19a), set C=ie- ', and apply M= (0

Use M 't( e-") = W
2
1( ), Mw('(Ce-")=w"'( ) on I and (3.17) on 0T in the

resulting expression. Finally, re-express ,,,j ,,, and in terms of w"), ,z
by (3.12) and tJ.19a), and equate coefficients of Wp(I), W . The result is:

b = - ave" - flye - '2 + rj8e-

I + ab 2a cosv - njae- "(
1 + bc - - 26 cos v + tjple-'' (3.23)

a + c + abc = 0l7 e' + i6 e - 's - jle- .

From (3.23), we deduce immediately that,

a+b+c+abc-- 2isinvn, (3.24)

so that any two Stokes multipliers (and v) determine the third C(3.22) almost yields
(3.24); the sign of the right-hand side is not determined]. (3.23) is not convenient if
one wants, as we do, to express everything in terms of these two Stokes multipliers.
(3.22), on the other hand, is linear in the entries of A. A tedious but straightforward
computation shows the following.

v=2n + 1a
When 2v is not an integer, or when v - 2-- andj*0, (3.22) has rank2, so that

ot, i, 7,6,j are determined up to two arbitrary constants; one is fixed by 6 - fly 1,
the other reflects the scaling freedom in 0.

When v - n, (3.22) reduces to I - I, while (3.23) yields expressions for %, f, y, 6 in
terms of two Stokes multipliers (again, up to the one free constant).
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2n+ 1
When v = -In+ and j=0, (3.22) reduces to I=I again. (3.23) can be solved for

a, b, c to give

a'mb=c(- 1"+ 'i. (3.25)

This has used -,fly - 1, and there are no further constraints contained in (3.23).
Thus, A depends on three free parameters. Two are connected with the inde-
terminacy of the definition of 0, as explained above. The third parameter, which

can be taken to be . or (a or fP may be zero), labels different systems (3.2)

corresponding to the one parameter family of solutions of (3.16) (this will be shown
later in this section; the systems will be constructed explicitly).

Remark 1. (3.22) provides a quick proof of the absence of logarithms when v = n.
Indeed, (3.22) says trace G' = traced-t = 2; computing trace G2, one finds that this
implies a + b + c + abc = 0. The characteristic polynomial of G then turns out to be
A' - 1 =0, so its eigenvalues are + !. G is therefore diagonalizable, and hence so is
G2 . But J=AG2A - ' has Jordan block form unlessj=O.

Remark 2. When can all Stokes multipliers be zero? Since then G2 = 1, (3.22) shows
that J =I, whence v = n. This is another case of which all systems (3.2) can be
constructed explicitly.
Remark 3. If, contrary to our previous position, v is considered unknown, another
parameter from the transform data must, of course, take it place. Suppose, for
example, that a, b, c are given. Then

a+b+c+abc= -2isinvx (3.24)
determines v mod 2, and it is clear that (3.22) and (3.23) are not affected by a
replacement v-.v+2m. If a, b, c are replaced by their negatives, (3.22) and (3.23)
remain consistent provided v-* v+ 2m+ 1. In other words, sets of transform data
which differ only by an integer translation in v and sign of a, b, c are possible; this
circurmstance is related to Airault's (3] Bkcklund transformation, which produces
a solution of (3.1) for v± 1 from a solution of (3.1) for v.

Remark 4. If x, q, r in (3.2) are real, the symmetry V(C, x)-MV*(*, x) shows
a= -c*. (3.26)

3D. The x-Dependence of T

It has been mentioned repeatedly that the transform data are independent of x,
provided that the Painleve equation (3.1) is satisfied. We verify this result, and also
prove a strong converse: given matrix functions '(x, C), O(x, C) with global
connection properties characterized by transform data independent of x, there are
unique systems (3.2), (3.3) satisfied by Pj, 0. As a corollary, one can see that there is
at most one set of functions IF,, 0 possessing given transform data.

Because Eq. (3.2) is determined solely by the global connection properties of its
solution, while (3.3) follows from the x-independence of the connection parame-
ters, the whole theory can be rephrased in a much more geometrical manner
without reference to differential equations; this is done in Sect. 6.
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In the remainder of this section, we deal with functions satisfying the following
conditions:

(a) matrix functions P holomorphic in S1=jI1 1>O, (-1) 3 5argC<3},

such that

)(e- 0),
as ICj--oo in Sj, and

7 I = WAj, ICJ > some e.

(b) A matrix function 0 of the form

( c ) = * '

with (C) holomorphic, such that for 'eS,

T 1,(C)=O(C)A,detA= 1.

[For sake of simplicity, we omit the modifications necessary when O) contains
logarithms.]

The formal series W(C) is assumed to have the symmetry

(C) M0(-oM=i(o, M= (1  ).

The functions studied earlier have all these properties.
We now prove the following facts:

Propositimn 1. Let T, 0 satisfy (3.2), with I, 0 normalized as in (3.6) and (3.13). If
the Painlevd equation (3.1) holds (so that (3.2), (3.3) are compatible), then these 7, 0
are also solutions of the x-equation (3.3).

Propositio 2. If f, 0 satisfy both (3.2) and (3.3), then the Stokes multipliers Ap the
connection matrix A, and the jump matrix J are independent of x.

Remark. Propositions I and 2 show that the transform data introduced above are
all independent of x.

Propoultio 3. Let 7, 4 have properties (a), (b), (c), and suppose that A, and A are
independent of x. Then 'P, 0 satisfy differential equations of the form (3.2), (3.3).

Prop tion 4. There can be no more than one set of functions T, 0, satisfying
properties (a), (b), (c) above.

Proof of Proposition I. Write Eq. (3.2) as 7-P, and (3.3) as 'P.Q,.
Differentiate the frst of these equations with respect to x and solve the resulting
inhomogeneous equations by variation of parameters to obtain

VIP I(- ')" + lp IF P- T PdC. (3.27)Oi
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But the compatibility condition of (3.2) and (3.3) is P = Q+ [Q, P] and, since
d

,P- (Q +[Q, P]) -(T -LQW), we have from (3.27) that

I,. =Q, + 7[7- I(T.- Q )],. •

Now let Co tend to infinity on the initial ray of that sector in which P - ' as given

in (3.6). One finds W. -Q T=O(-Q), which tends to zero. Hence, TfQP. A similar

proof holds for 0.

Proof of Proposition 2. We prove that AJ is independent of x. A1 f 7'Tj, and
thus A . - P ; l . 4F .i -+ 1 + 'P 'Q f , =. T he

proof that A and J are independent of x is similar.

Remark. From the form of J when, for example, v =ij, it is by no means obvious

that j, -=0. However, note that the x derivative of j = 2 q + q2 + ) e 2 is zero by

virtue of (3.1).

Proof of Proposition 3. First we note that (c) implies the following symmetry for
the coefficient C, in the expansion 0:

-MCM-C 1 .

It follows that C, 1 2=-C,.2, and C,.,=-C., 2 : we set C1.12 =-q, and

C,.1 -p. Now differentiate ?,., = WjAj with respect to x, and multiply by :

-I is therefore well-defined and holomorphic in a deleted neighborhood of x.
and its asymptotic expansion is to -P , uniformly for 1C >some U.

The asymptotic expansion is therefore convergent; we set

F,#- , -= 00, 1 (3.28)

Q(C) being a Laurent series in C *, with a simple pole at >- -:. Near C-0, we find
in a similar way that

But *,4 'is holomorphic at C ,0, so that Q(C) contains no negative powers of .
The explicit form of Q(C is now easy to obtain by inserting the expansion 1P into
(3.28). The result is

or

Qo_(ji q).
q _C
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Hence, TP, 0 satisfy an equation of the form (3.3) in x. A similar argument shows
that W T' is well-defined and holomorphic away from 0, o, so that

P(D has a double pole at =oo. Near 0, we find

Hence, P(O contains at most the negative power -.We wish to show that in fact
enters P() in the form

Put *0)( - '0) -'() = (Q. First, we note that the diagonal entries s, ,c

must be zero; otherwise there would be a term 4±1 in the expansion IF [16]. In
terms'of the entries 0,O), this means

But also det(O)= 1, and a short computation shows that z, 2 = '2 . Property (c)
implies the symmetry

P( -D) MP(DM,

and this forces 12=821, so 612 -2 ±-1, as was to be shown.
It now remains to compute Wk --I= P() through the Co term. There are

certain non-obvious cancellations, e.g. of C-I2 terms, which are automatic by the

analysis at C =0. By (c), C 2 has the form (Y z One finds that [with N=

P(D =i(4iC2+ix){ N+ I[C,,N] + - ([C2, N] +[N, C I C)}

or

If r.4z-2ipq, this is precisely the form required by (3.2), up to the ambiquity in
the sign of v. The hypotheses do not allow one to distinguish between

+V(O 1), with 0 as defined in (3.13),
+ 1 0

and

+(.2( 0 1), with (4-(042), - 0(1)).

1 0), I --.
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Had we assumed, in addition, that 40) is proportional to ( 1 1), the choice

+ 1 0) would have been the only acceptable one.

Remark. In the first case, q will satisfy Eq. (3.1). In the second case, q solves
q. - 2q3 +xq + v, but - q again solves (3.1).

Proof of Proposition 4. Suppose that W and W' Uf= 1 . 7) have property (a), with
the same Stokes multipliers Ap and suppose that T, -OA, T,= _W A with 0. 0'
satisfying (b). Then

so Sm. Wl'' " is well-defined and holomorphic about C-oc, and from the

asymptotic expansion one sees that S is a Laurent series in C, S(C) = + (). Near

-=0,

S(O-?='W; 1 =0'0-1 =4Y0 1 =const+O(C).

a Taylor series with no negative powers. Hence (C) 1-, as was to be shown.

3E. The Inverse Tansform

We now turn to the existence problem; are there solutions W, 0 giving rise to a
prescribed set of transform data? Here we derive linear singular integral equations

ra

/ \

/ \
I i \

-, a. . iF

X /6

C3 Ca

-Y
C..

FI. 2. The contours in the C-plane for the inverse problem for Painlevt I
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from which the solutions W and 0 may be constructed. The parameters in these
equations are x and the Stokes multipliers. For simplicity of presentation, we take
v - n, a positive integer. The results for v * n are given in Appendix IV.
Consider

f 44(x)e *d4, 0=4iC3/3+iCx; (3.31)

for convenience, we take C to lie in the interior of S. Our goal is to write a system

of linear singular equations for W", and w"). The strategy will be to relate, by
Cauchy's theorem, the integral along C, to one along C, and to continue this
process around the singular point x.

We begin by noticing that

S+'  7tU(1\I  12 e-aw y) (3.32
S d4=2xiw 1(CVe0- + -+  - d, (3.32a)

where we have used (3.12b). Now W(1) e x-c as c- x in S2 , and therefore it is not

possible to relate the term -a 5 --L -d4 by contour integration to an integral
C

along C3. This integral is not transformed any further and appears in this form in
the final equation. We can, however, continue with

,,-d4 + Y 71 + 44. (3.32b)

Continuing in this manner around the C-plane we find,

1 (1) (2) +

Will?\ 11 0v (1

1 !~-d4,...- )+!LdC+ EK.!Id, (3.32d)

C. 4-C 4-;

5 L ) p Ild4 '4 f !~'L~d4  (3.32e)

and

W6 d . W (3.320

Here, we have used W1 ) 1=t, which is a consequence of the assumption v = n.
Adding the Eqs. (3.32a) through (3.320, we find

4"'N(C) 0 '-( ) Res! a- f 4

2i j 7- , 4 f d4 , (3.33)

+_ C..C.
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where we have substituted for w''j=2,4,6 from (3.12) in terms of W"'. W(2) and
used identity (3.24), a + b + c + abc =0. The contour C,, is one which runs inward
along C4, then clockwise along y, and "(3 and goes out along C, The contours C6
and C,6 (which is - C6,) are defined in a similar way (see Fig. 3).

\ II
C49

Fig. 3. The contours C4 and C,6

Remark. Note that the same contours are used in the integral representations of
the Airy functions. In fact, (3.33) contains the Airy function representations as a
limiting case [see example (i) which follows in 3F].

By considering

ef 2 eo 
(3.34)

C,

we find

W(2)e- e = ( - Res d+ d +
ab W 2?e - 0

ab1- d . (3.35)

Equations (3.33) and (3.35) are linear integral equations whose solution determines
V I and W421, and hence all the coefficients in the Eq. (3.2). In particular, from the
asymptotic expansions (3.6), we known that

q- i .r (3.36a)

- r a 2imu, w e (3.36b)

where the subscripts in (3.36) refer to the component, and not to the sector.
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The integral Eqs. (3.33) and (3.35) have been derived on the assumption that
functions j with the prescribed Stokes multipliers exist. Conversely, one wants to
answer the following questions:

(1) For which x,a,b,n does a solution of (3.33), (3.35) exist?
(2) Does it exhibit the prescribed Stokes jumps?
(3) What properties of q(x) can one deduce from the solution IF so

constructed?
(4) What is the dependence of q(x) on the parameter a, b?
Some preliminary observations follow from the known properties of the

Painleve transcendent, q(x). It is never an entire function of x, unless it is
identically zero; it is, however, the ratio of two entire functions. This suggests that
for given n, a, b, the solution of (3.33) and (3.35) will exist for all but a countable set
of x. In particular, the inverse problem (Riemann-Hilbert problem) is not always
solvable subject to the symmetry imposed on (3.2).

It is not too hard to see that any solution of the integral equations will have the
required jumps; this follows from the behavior of the Cauchy integrals when ,
crosses an integration contour. The first problem, however, is existence of a
solution. We have not found a proof; indeed, we have not really looked for one.
The reason is this: other irregular-singular monodromy problems will lead to
different, and more complicated sets of singular integral equations - see Sect. 4, for
example. One needs a quite general theorem, if case-by-case existence proofs are to
be avoided. It is clear that existence will depend in a subtle way on the exponent
0(C), particularly when 0 contains several independently varying parameters (cf.
Appendix I). Local existence in x is probably easier to get. but not of much
interest for applications to Painleve equations. Thus, we restrict ourselves in this
paper to the examination of various limiting cases and special examples. Other
properties of Eqs. (3.33), (3.35) are under investigation.

3F. Special Solutions

(i) The linear limit

Take v -0 and a,b,c, small. The usual procedure in solving (3.33) and (3.35) is to
form the Neumann series. Here we keep only the terms linear in the parameters a,
b, and c. We find

)e I( a I T d4e +.d b 1

Therefore from (3.36)

q=' a e-'3' xdx+ S eS+4't,,z,<,diC.2 I C46

=- a+ A)(x) b Bi(x) (3.37)

2 V.
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when Ai(x) and Bi(x) are the Airy functions. Note that when q(x) is real, c -a*

b -a*-a to leading order and

q a*Ai(x) + - B i(x)
2=~-Aix 2

= Rea Ai(x) - [ma Bi(x). (3.38)

(ii) Solutions which decay as x- + oo. Throughout this example, v is taken to be
zero. In this case, a one-parameter family of solutions of (3.1) has been studied by
use of the Marchenko equation of the inverse scattering transform ([2,10-12]),
Eq. (2.14). Such techniques apply when q(x)-0 sufficiently rapidly as x--* + o :
(3.1) then reduces to q4,=xq for large x. It can be proved that q(x) has the expected
asymptotic behavior,

q(x)-q Ai(x) (3.39)

for some constant g.
The rapid decay (3.39) ensures that the constructions of scattering theory can

be used on the x-equation (3.3) at x = + a. In particular, the eigenfunction D(x, )
of (3.3) with asymptotic behavior

is defined for ldrge enough x, and it admits the triangular representation

v(x,o)e-9'= (O) + ! K(x,s)eg'-() ds. (3.40)

By repeated integration by parts in (3.40), one may derive the asymptotic
expansion

v(x,COe - x( + - (3.41)

valid in the upper half C-plane. Now, v(x, C)e- 4 a is precisely the solution w'21 of
(3.2) on argC=0, and since the expansion (3.41) is valid in S1, S 2, S3 the Stokes
multiplier b must vanish. In this case, (3.33) reduces to

IP, t,(Oe'KQ. (1) + _L , ._ d4a ')

. ( _ d4. (3.42)

Sine (+ aW(2) = W I= MW(z(-C), we may change C- -C in (3.42); then
I a W w2ee

Sj: dl. (3.43)

1
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Substitution of (3.40) into (3.43), followed by a Fourier transform [23], will recover
the Marchenko equation (2.14). The constant e in the asymptotic form (3.39) of
q(x) coincides with the nonzero Stokes multiplier a.

In this example, therefore, one can see explicitly how the Stokes multipliers a
and b characterize the Painlevi transcendent q(x):

b=O implies q(x)--,O as x-* +oe,

a describes the asymptotic behavior, q(x)- aAi(x).
It is shown in [11] that there is exactly one q(x) satisfying these conditions. A more
detailed analysis [11] of the Marchenko equation (2.14) reveals that q(x) has no
pole on the real axis when - 1 <a< 1, whereas it has at least one real pole when
jaI>1. A proof based on (3.43) would be quite analogous to the argument in [11]:
for lal < 1, the inhomogeneous Eq. (3.43) can be solved for any real x (remember
that x enters in 0), while any a with jal > 1 is eigenvalue of (3.43) for some real x. It
may be possible, however, to go beyond the results of [ 11, 12]. Since (3.43) is local
in x, one can study the limits x-- ± separately. This is relevant to the solution of
the connection problem for the second Painlev& transcendent [10, 11]: what is the
behavior at x = - oo of the solution which goes as (3.39) at + z ? The Marchenko
equation (2.14), by the time x goes to - o, contains information about q(x) for all
real x, and it is apparently difficult to extract the asymptotics at - 0.

Connection formulas between singular points of Painleve transcendents are
important in several applications; in the [sing model, for example, the behavior
near x=O of the third transcendent is of physical interest (4, 13]. We hope to
return to these questions in a later paper.

(iii) The rational solutions: the "solitons" of the Painlevi equations. In the inverse
scattering transform, the solitons are associated with the bound states of the x-
equations (3.3) which are located at the poles of the reflection coefficient in the
upper half C-plane. The analogue to the multisoliton solution is a class of rational
solutions which are associated with the poles of the fundamental solution matrix
W(C,x) at C =0. When v=n, we find these solutions by setting a=b=c=0. Then
from (3.35),.

V2( - °- - Res w (2 -3.44)

We mention that Eq. (3.44) will provide the rational solutions for the full class of
equations of the Painlev II family which is defined and discussed in Appendix II.

Near C-0, the solution W(2) will be a linear combination of 0"1 and 0(2) as
given in (3.13) and thus will have the form

Wp 2 = , I a, Y-+ a (3.45)

Now since a=b=c=0, W(Ie - 0 is meromorphic and tends to (0) as -- c and
therefore must have the form

u--V 2) e-'=-n-(Uo+CU' + .+CR-tu._l +() ,
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which follows from (3.44). From (3.6),

&) -f2iu.iq + 2i X u - L.2 (3.46)

where the subscripts 1 and 2 refer to th! components of u.,.1. Set

ef = r j  O= Z '(12j ;'jzt + /2j+ I+ i~x. (3.47)

j-0 j-O

Expand V2) in a series in ,

(2)l = ueO =( + ... +- OU.- )) Ti.

We compute the coefficient of C*, and demand that it be orthogonal to ( ,

k --.. n .... , n- 1, as required by (3.45). With the notation =u4 + uW, ,ffi - U1,
the resulting 2n equations can be written (if we use To 1):

0 0

noT +1 1=0

roT2- I + .. +q.-IT.=( - V)T".- 1. (3.48)

(3.48) decomposes into two separate systems for :, :

1
T 'IT T

2
T

, 1 , T,1- (3.49a)

depending on whether n is odd or even;T,) 10. 70
(TilO.. )(n odd )(n even). (3.49b)

,Z I\*I )_ix-

It is useful to observe that the matrices in (3.49) are Wronskians. Indeed,

dxd - e# - i, so that lTj, iT_ I. Hence, the derivative of each column is i times the

next column.
We now solve (3.49) for .- , n.-, by Cramer's rule. The denominator

d
determinants are denoted by 4 , ,_. By the Wronskian property, T 4 , is a single

__ _ _
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determinant in which the last column is replaced by its derivative, and it is easy to
see that this derivative is in all cases proportional to the right-hand side of (3.49).
Specifically,

,- i +  n,- - - - -_ •(3,50)

From (3.46) we find

q-. -inL d.), 2.i _(logd A ).
_ q2 =-log~ (3.51)

These are the solutions determined by Airault [3] through a series of recursion
relations. The first two are, for the case 0= -iQ+ix:

1
n=l, d+-=, _= ix, q=-.

x

4 ix
3  1 3x 2

,n=i2. d+=ix, J_ 5- i-- '-, q=-x+4+- x.

Observe that all these solutions satisfy a Riccati equation:

qx + q _2(log4),, (3.52)

An interesting class of solutions of the higher-order equations of the Painlev6 II
family with 0 given by (3.47) is obtained when - 2(ln +) , in (3.57) is

n(n-l1),7_- Ix7

These solutions are related, by a Miura transformation, to certain rational
solutions of the KdV hierarchy [25]. To get these solutions, let
8=i(0)Zk+ IC2 + l+Cx) and pick n g k + 1. In that case, all entries of J + arise from
powers of iCx in the expansion (3.47) of e, and 4 + is the Wronskian determinant of

I,- )2  .... .. This is easily seen to be proportional to x. x2 - x3 ... x"'2!. ' 4.. '-' (2n-2)!
a("- )

.x'2-. Hence, - 2(log44 +), - n(n- 1)/x2 .

For each n, only one solution of

n(n- 1)q., + ql - -- , , n 1

will also solve a Painlevt equation, and in fact it will solve all the equations of the
Painlev6 II family (Appendix II) in which the first nonzero power of C (besides i~x)
is at least C2,- 1.

(iv) Solutions with v- -- +, j =0. It was noted in 3C that this is an exceptional

case. We begin with a detailed description of the situation for v -a2*

t "_ _ _ _ _ _ _ _ _ _ _ _
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According to (3.15) and (3.16), j=0 implies
q. +q2+ 2 -=0.

2

Let q(x)= -lnX; then
x

x.x - YX,

whose general solution is

X=CAi(-2- "3x)+C 2Bi(-2- "3 x).

The solutions of (3.2), (3.3) can be verified to be

F (C, x) = 1O -1 (( LnAz2-/~iZ
2 1 + iq)Ai(z) +2 -1/ 3 Ai,(Z)/

and G(C, x), which contains Bi instead of Ai; here
z ff eix(2"13CI + 2- 113 x). 20 ff 2V6 Or eiX1A.

Using the asymptotic properties of Airy functions, one may verify that $
z =-(iF + G,F -iG),

72 =- 2iF, F -iG) - ,(_1 0),

T3=(2iF - F - i ) T ( 10-il)

from which it is evident that a -b c -- i. The solution matrix e , x)
- ( '1 1(C,x), 4't2 (,x)) defined by its behavior at the origin -0 is

'P 3 - (KiF+K G)

*(#oi(-K- 1C- 2C1 ), any Ka/Ki*Cz/Ci

7,= - (iF-G- F+ -G 3 )

(0.

76 - (i 6 1

f w ix

x) (UC ) eie yis eaira h rgnC0i

(KF.2G - nIIK * 2
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where fo iao/2" In. The indeterminacy described in 3C is seen in the arbitrariness
of K1, K.

Finally, note that since Ai(z) and Bi(z) are single valued functions of C, the only
contribution to the jump matrix J is from the square root C-t(2. Hence, J - -I.

We next describe the general case v - L (n 0).

Let A(x, C) be a fixed solution of A. x (- C 2)A. The solution 012u of(3.2) is
sought in the form

C1  \d.l (353

ac1/2{A(xC)(Co + + +-+... + (xC(L'+... +. (3.
where C0  (1r)' d =i ((- ir~ +I), and the coefficients follow the alternating

± pattern. By definition, the leading power in OM is C 2 . One must therefore2a + 1 2a-1l

equate to zero the coefficients of C 2 2... 2 in (3.53); this gives 2n+I
equations for C ...... C.+ 1, d2 ... d, , and the coefficients of these equations will

aj 14 1

involve derivatives - A(x, C) L. The coefficient of C 2 in (3.53) is e" x' [...

(3.13)], and its log derivative is the required q(x).
A concise expression is afforded by

q(x)=- d In W(y 1))

X WMY, -- , Y(RI)

where 7(x) - A(x, 0), and W is the Wronskian determinant. (These solutions were
discovered by Airault [3].)

4. Painlevi M; Solution of an Initial Value Problem

4A. Outline

In Appendix I, we show that the equation

(xuz), =- 4 sinhu, (4.1)

a special case of the Painlev6 equation of the third kind, is the integrability
condition for

VIC=( ax+ icoshu V,+( fz + i sinhu) v 2  (4.2a)

/ -x -2V2 -X'-i (42b
V-u.- Crsinhu) vi+ ix- coshu)v 3 " (4,2b)

and
V 1.=,-0 1v + qv 2 ,  q , u./2, (4.3a)

v2 qV1 + vC2 . (4.3b)

I i - _I_ _ _ i-i I I I IllI i. . .
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In Appendix III, we show how these equations relate to the work of Sat5 et al. [7].
Following the steps described in Sect. 3, we give the general solution of (4.1). The
principal difference between (3.2) and (4.2) is that the former has one regular and
one irregular singular point, while the latter has two irregular singular points, one
at C - ao and the other at C= 0.

4B. Step I : The Direct Transform and Properties of the Transform Data

It is straightforward to write down the asymptotic forms j(1), 0") of two linearly
independent solutions of (4.2) as C--.oo :

(L((M +x) I e ' ) 2/ + (i -/2 coshu) + .... (4.4a)

'21(C. x) -= {(') + (ixq /2- i(t - cosh ..

X
Note that, from (4,1), xq 2/2 +cosh u - I = xJ q + const. We have found it con-
venient for reasons of symmetry to include the i/t term in the exponent of (4.4). At
=0, two linearly independent solutions 00), 0(2) have the asymptotic behavior:

2) (+..) (4.5a)
si 2u

-sinh-U
2 (1 +..). (4.5b)( )/

C osh U2

In particular, we note that, if we write ,=( (I, 2") and 4 , (,(21), the
following relations hold:

M#(-C,X)=.#(C,X)M, MW(-CX)==4kCX)M (4.6)

and

N - , = qP€,x) 1 '(4.7)

where

M( o) and N (2 0 )- (4.8)

___

i-i ! cosh 1__ )
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Indeed, from Eqs. (4.2), (4.3) one can show that if VP(C, x)m(It)( . x), 12)(, x)) is a

solution, then so is

M(-C,x) and NV (_ x ) (4.9)

From the asymptotic expressions (4.4), (4.5), we observe that the lines on which
the asymptotic solutions change from recessive to dominant and vice versa, the
anti-Stokes lines, are argr, = nx, n-=- 2, - 1,0,1, 2,.... Accordingly, we designate
the sectors -2n7argc<-n, -xgargC<0, 0_5argC<x, x;5argC<2X, and
2x jargC<37 as S 2. , S- 1 S S 2, S3, respectively, and define WP4 ,x) and 0,x),
j -2,- 1, 1,2,3 to be the solutions in these sectors which have the asymptotic
behaviors (4.4) aud (4.5) on the initial ray of each sector. For convenience, we omit
the subscript I when referring to the first sector. Il a

We will now show that all the Stokes multiplier matrices for the P-, are

or (1~ and for the 'D, (t0 ) or (1 0~). First, if x <0, w"I and ( are recessive
in SV2. S1 , S3, and dominant in S-,, S 2, rp(), P21 are recessive in S-,,S2 and

dominant in S- 2, S1 1 S3. Therefore,
I a- , ?'= 1 0)-= - 0 1 V , a 1 (40

From the symmetry (4.9), we have that

MF(Ce' , x)M- = '(C, x), (4.1 1a)

M'P At- "', X) M- ' - P (C X). (4.11 b)

To see this, observe that the left-hand sides of (4.11) are solutions of (4.2) with the
required asymptotic properties on the initial rays of the respective sectors S2 and
S3. Substitute in (4.1 Ib) from (4.10) and find

whence a.-,a. By a similar argument, a-2 =a- -a. We can also prove that a is
the only Stokes multiplier connecting the matrices Oj. If x>O, the Stokes
multiplier matrices are the transposes of those for the case x <0:

f 2 IF(a 1), ~P=F(0  ). (.2

The matrices IP and 0 will, in general, not be single-valued. We next calculate
the monodromy matrices J; and J defined by the relations

'(Ce" ') IF(C)J , O e'),-V(C)J (4.13)
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in terms of the Stokes multipliers a and 5. The subscripts -, + refer to the cases
x< 0 and x>0, respectively. From (4.10) (the case x<0), we have

13Cli)-I a" - noi (4.14)

Now let CeS, tend to infinity; then

J'_( I 1a ) (4.15)-a +

since both P3 Ce2" ) and P(C) tend to '(C). Similarly, if x >0.

j~(I12-). (4.16)

Also,

Finally, we specify the connection matrix A between P and 0,

TI'O=A, A=( ) (4.18)

From the normalizations of P and 0, E6 - fly = 1. Let us now derive relations
between J, J_, A, for the case x<0. Let C-*Ce2 ,

d in (4.18), and use (4.13) to find

AJ_ = JA. (4.19)

Since J_ and 5 are similar, their traces are equal; from (4.15) and (4.17), =sa,

s= ± 1. Comparison of the other entries in (4.19) gives

fl=sy, =s(J+ a). (4.20)

Among the transform data, therefore, there are only two independent constants

which we take to be a and . The reason for the sign parameter s is discussed later.

Similarly, if x >0, we find

AJ. -jA, (4.21)

from which we have

a-sa, a-s, f=s(y+a6). (4.22)

4C. Step 2: The x-Dependence of the Thansform Data

Arguments which exactly parallel those given in Sect. 3 show that:
(1) If (4.2) and (4.3) and therefore (4.1) hold, the transform data, which consist

of the Stokes multiplier matrix (0 1), the monodromy matrices J,, J ,Jand the

connection matrix A, are independent of x.
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(2) Conversely, if the transform data are independent of x, and if we specify
functions IF, 0, to be (a) connected as in (4.10), (4.13), and (4.18), with (b) the
symmetry properties stemming from (4.9), and (c) with the asymptotic expansions
(4.4) and (4.5), then the functions TP' 0 satisfy differential equations in and x
which have precisely the form (4.2), (4.3). The coefficients in the equations are
direcqry related to the coefficients in the specified asymptotic expansions.

4D. Step 3: The Inverse Transform

Here we show how to derive, at any fixed position x, a singular integral equation
for the matrix function W(C, x) from which one can, in principle, construct the
function TP(C, x) and the Eq. (4.2) which it satisfies. Since the coefficients in this
equation are functions of the solution u(x) of (4.1), we have therefore found
u(x)(mod2xi) for any given x. We first look at the case x <0. Consider

d with o = i x + (4.23)

The reader should refer to Fig. 4 for the definition of the contours. The contour F
has a large radius, the contour y a small one. Let CeS 1 outside the circle
designated by L

I1.4. The contours in the C-plane for the inverse problem for Painlev6 IlL x <0

LT,1
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Using Cauchy's theorem, we obtain

E d+x 27miw"le+ 5 -ed + ~4. (4.24)
c, l (. ) C2  e

But V 1) = 1 ) and

f fL d4 + () J'2d4+ d4 (4.25)

We add the two equations to obtain

+ a f _-ed - - _--. d4, (4.26)

0 M7C, 4 2x Tri , -
upon making use of the relations w21) = w(" and [from (4.13)] Wpl)(Ce2xi)m V(1)(0
- av")(0. A is the union of the two contours , and A2. We will see later that, in the
linear limit, the second term on the RHS of (4.26) gives rise to the solution
K0(4 V-) of the linearized (4.1), and the third term, which will be associated
with the off-diagonal terms in the connection matrix A, gives rise to the solution
1,(4 /--x) of the linearized (4.1).

Using (4.18), we find

I 1P Me l = I0)eo d4 + +2)ee#d4

which, because 0, 1 e is bounded on the contours y, and 72 whose radius is
arbitrarily small, is equal to

I ekd1 + I +,~ 121  WL d4.-- _1S ~ -J - d + t e 7 - +
O2 e  5 ---- e-d.

But OM- O' , and continuing the second integral into the lower half plane and

using the relations 0('1(Ce ) = Olt)(_saO(21(C and w(t t - ( 2), we find
6 6" '  sa ° t 2 e _ v, ipz2 e9Me 4- sa 0()O + Y W2--@d4

Finally using ,(2) - P P + MW, 2 and replacing a and P from (4.20), we find

0) a xW) , _"(___

+!L V, (4 ?d- ay fT")( ., (4.27)
6 D, 4- X D

which together with Mi 212)(Ce") - "c)(C defines the solution matrix P(C, x).
(4.27) is a singular integral equation in which the parameter x <0 only appears

in the exponent 0(e) - x + . The initial conditions u(xo), u.(xo) are represented

by the parameters a and Notice that the sign parameter s has disappeared

6!
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altogether and plays no role in the determination of the solution u(x) of (4.1). Its
appearance in the transform data is a consequence of the symmetry

U-+-U, v)--* 0 -- or (- Ov,

present in (4.2), (4.3). This is reflected in (4.27): note that if W(1)(C, a, -), iP2)(aZ)

is a solution, then so is _ )(c, -a,- and(-' 0)4W(2) ( , -a,- .

Obsc.ve that this transformation also satisfies the symmetry condition, since

M I OH= M.

We now apply the linear limit to (4.27) by taking a and to be small, neglecting

all quadratic and cubic terms in the parameters and approximating W (21 by (0) e

to leading order. Then, using

l(x) - ux -im 2iCW" )e -  lim 2iC,(2e' (4.28)

(the subscripts refer to the components), we find that

q(x)= aie24x +2'/4 d fLe2'4x+2i/4d .It 6 A

Integrating with respect to x, setting e in the first integral, taking A to

be the circle I I= in the second and setting = - , we find

i, 2z 'v  *  d

ux)= a cos(4 V"Z7 sinh') do + e'd,6/ir6o

Wa Ko(4 V,/ )+ 1J(4 C ). (4.29)

We observe that if u is real, a is pure imaginary and . is real. This may be proved as

follows. If u is real, Mp*(C*, x) is a solution if W(C, x) is. From the asymptotic
behaviors we have that M)PI'(*) i' ._ (C)M and MTP*(C*)fiP( )M. But

i-, - T 0) and i2 =='(' a) and from these relations we find a*-= -a.

The reality of follows from similar arguments.

The solution of(4. I) studied by Sat6 et al. corresponds to the case - - 0 .that is,

the inside-outside connection matrix A is the identity (s >0). From the remarks in
example 2 of Sect. 3F, the reader may convince himself that this is also the case
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which can be treated by inverse scattering theory. In other words, the function
tv '1e"' is analytic in Im >0 and in particular bounded as -- 0 only' if W(11 contains
no component of (l), which from (4.18) and (4.20) means that #=7=0.

When x >0, the derivation of the singular integral equation is simpler and can
be accomplished without the contour A. Let CeS 2.

Use Cauchy's theorem to express f E--d in terms of an integral along C2.

Because this will involve an integral along y, on which contour 01z)ee is

Fig. S. The contours in the C-plane for the inverse problem for Painlev6 III, x>0

exponentially large, we must subtract an appropriate amount of ,(2p from p(11 in
order that the 0") component be eliminated:

(1 V (2)
Wl"' d4- e- d+ Z I_ d

I1 12(2)
e= d4 id + 'e

C,

- -- - a
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But W W2W= W2( , 2) () (1) - aW(2 ). Thus we have

(1) - -- - 2

W2 (a 1 W2 (2) G

C C2 6 e

Now "eo, 0( 1)eo, 4(2)ee are bounded on r2 and 72 respectively, and thus 5
can be continued to argC = 21r. On this line, W(2 

1)(Ce2t* ) = ' )(Ce2"') + aW2)(Ce 2
s
t)

=( 1 +a2)p1 )(C) - aw12)(C) + a(1 2 1(0) a2p "(C) - tp' '(C). Thus the integrals

f W 4on arg=O and 5 -- d on arg--2n cancel. We find

a f(C)e = d- f _ C .. (4.30)lie +d o -C

Taking the linear limit, we obtain (as expected)

u(x)=aH1)(4 V-x)+ ZJo(4 /x) with x>0, (4.31)

the solution of the linearized (4.1).
We remark, in conclusion, that just as the contours involved in the singular

integral equations for finding the solution of Painleve II are those used in the
representations of Airy functions, so the contours appropriate for (4.1) are familiar
from the representations of Bessel functions.

5. Hamiltonian Systems

Another property shared by monodromy - and spectrum - preserving defor-
mations is that the deformation equations can be written as completely integrable
Hamiltonian systems. The modified Korteweg-deVries equation (2.9) . n be

written q, = /x , with H. f (q2 +q4 )dx. It can be shown [24] that the

mapping to scattering data is canonical and thatf suitable combinations of the
scattering data are action - angle variables. In contrast, Eqs. (1.2) and (1.4) can
each be written as a four-dimensional Hamiltonian system with x playing the role
of time.

Consider (1.2) and let

XOp, -q.,q 1 =q,p Jqdxq, =x. (5.1)

Then
H(p,,q1,p 2,q 2)= 1.p - 'q2q 2 +P2 - lqf+vq, (5.2)

is the Hamiltonian. It can be verified directly that t? is constant and that

Hamilton's equations are satisfied by (1.2). But we have already shown that each

-- .*..,,A" -
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piece of monodromy data (a, b, c,j, 2, A, 6) is also a constant of the motion and
thus

a.= {H,a) =0, (5.3)

where {H, a} is the usual Poisson bracket. Therefore we have two independent
constants of the motion in involution and thus the system is exactly integrable.

Similarly, for (1.4), set

Xe

I f 2dx, q2--X (5.4)Pt :xuvql =u,p2- 2= X

and
1 2H(p1,q 1,p 2,q 2)= 2pi +p 2 +4coshq,. (5.5)

Again any one of the monodromy data is an independent constant of the motion
which commutes with H and the system is again integrable.

The Hamiltonian property carries through for any one of the members of the
Painlev* 11 family discussed in Appendix 11.

We have not as yet examined in what sense the transformation from x, q, q., to
the monodromy data is canonical nor have we identified the appropriate angle
variables in the new coordinates.

6. Further Discussion

There is a vast literature on monodromy problems, starting with the investigatio.
of Riemann on analytic functions defined by their branching properties up t-.
algebraic geometry studies of recent years (for an introductory survey, st,[,
We have not found modern mathematical work which has concerned itself w,,n
the "linearizability" properties of the nonlinear deformation equations which
express the monodromy preservation property, excepting, of course, the papers by
Sat6 et al., and the recent thesis of Ueno.

It has been mentioned repeatedly that the work of Sat6 et al. [7] not only
provided the stimulus for the present paper, L it also suggests many further
problems about singular points and deformation theory. After completing a first
draft of this paper, we learned that K. Ueno of the Kyoto University RIMS had
carried out investigations [27] which overlap ours to some extent. He derives
deformation equations for nxn systems with singular points of various ranks at

-0, c, and establishes results of the kind contained in Sect. 3C above. In other
respects, his work and ours are complementary. He has not yet considered the
inverse problem; on the other hand, he had found a remarkable generalization of
our rational-solution example in 3F. By including apparent singularities in
equations such as (3.2) or (4.2), i.e., by including a term

with certain assumptions about the indicial roots at the 2,P he can recover the
N-soliton solutions of MKdV, sine-Gordon, etc. (an appropriate limit, in which all

QA
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zJ--.0, should yield the rational solutions). This is the clearest evidence yet that
soliton and self-similar solutions will fit into a unified framework.

As we expect that monodromy-preserving deformations will play an increas-
ingly important role in diverse problems of physics and applied mathematics, we
now give a brief description of some of the other papers we have found particularly
useful. We also outline various reformulations of the inverse problem discussed in
earlier sections, in order to emphasize the similarities with well-established and
successful approaches to other inverse spectral problems.

The pioneering work on irregular-singular Riemann-Hilbert problems is that
of Birkhoff [16, 17]. In [16], Birkhoff analyzed the behavior of certain canonical
equations near an irregular singular point, counted the number of characteristic
parameters of the asymptotic solutions and showed it to equal the number of
adjustable coefficients of the differential equation, and hence suggested the
possibility of solving the inverse problem. In our formulation of the problem, we
have been guided more by inverse scattering than by Birkhofrs solution, which we
have found to be inaccessible on certain points.

While the structure of solutions near an irregular singular point has been the
object of many studies since Birkhofls influential papers, the problem of finding
equations with prescribed Stokes multipliers is encountered only rarely. The
extensive work of Sibuya [28] should be mentioned in this connection; its
relevance to deformation problems is still unexplored, The work of Sat6 et al. is
obviously relevant to problems of irregular singular monodromy; except for a
brief comment in [7, 111], however, they have not developed this aspect of their
theory. Their work shows that irregular singular points of ordinary differential
equations can be transformed to regular singular points of partial differential
equations. Indeed, the idea suggested by their approach, to use partial differential
equations to find representations of and to investigate solutions of ordinary
differential equations with irregular singular points, has not yet been explored and
seems to be a fruitful area for study.

The irregular-singular Riemann-Hilbert problem fits quite naturally into the
inverse spectral approaches developed for the solution of nonlinear evolution
equations. We briefly describe the various connections.

In [29], Zakharov and Shabat solve the inverse scattering problem as follows.
Define solutions 4, ' of

vtx+iv =qv2

V2- iCV2 =qv,

by

(0) e x- - ce, 1) eic, X.* + 00. (6.1)

Then a 0-a + b, where (rx, j*), ,(x,C*)r (q is real). Set

X) a ((x, e ) , ImC >0 (6.2)

( ej4(x, ) m < 0.

-.. . - ,_ -
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From the jump of 0 across the real axis,

,(, x) H 0( + i, x) - W - O, x), (6.3)

reconstruct 0 by a Cauchy integral; this leads to a system of singular integral
equations for ,.

One can reword this approach. For ImC>0, @(C,x) has an asymptotic

expansion () Y O 0-". The analytic continuation of this expansion to ImC <0

is not the expansion of an analytic continuation of 0 from lmC>0; rather, it is the
expansi.,: of 0 as defined by (6.2) in ImC <0. The jump (6.3), n(C,x), is given by

b--C e'c% , x) ; (6.4)

it is analogous to, and has the form of, a product of a "Stokes multiplier" and a
"recessive solution". In contrast to the cases discussed in the present paper.

however, b (C) has a very general dependence on C. The reason is that C, x) and
a

'i4, x) do not satisfy differential equations in C with polynomial coefficients. When
they do [if q evolves in a self-similar manner, or if the t dependence is dropped in

(A.4)], the reflection coefficient has the form of the product of b(0) and expSiQ /3.
a

Appropriate scaling of the solutions and 0 with the factors exp±4ic3/3 then
shows the jump (6.4) to be the product of a Stokes multiplier and a recessive
solution.

Zakharov [30] has recently propounded an extension of inverse-scattering
ideas, based on Riemann-Hilbert problems. This generalizes the Zakharov-Shabat
method sketched above, in that the eigenfunctions are reconstructed from
prescribed jumps across arbitrary closed curves in the C-plane. Whereas Zakharov
has formulated his new method in extreme generality, the only solutions published
so far have a soliton character, in that they correspond to point spectra of certain
operators. Our paper, from this perspective, provides the first other type of
solution derivable by ideas related to Zakharov's and not accessible to inverse
scattering. The curves across which the "jumps" are prescribed are more com-
plicated in our examples than is envisaged in [30].

It is interesting that the irregular monodromy preserving deformations relate
as naturally to periodic inverse spectral theory as they do to scattering theory. The
approach developed by Krichever ([31], see also Novikov [32]) is particularly
relevant. Give

i) a Riemann surface S, of genus g, with a point called oc,
ii) a nonspecial divisor P, + ... + P.,

and seek a function tx, t, y, P), meromorphic for Pe S, except at P - m, such that

iii) Wp-exp(kx+R(k)r+Q(k)y) near k-ac( is the local parameter at oo),

iv) Vp,0,0, P)- 1,
v) the poles of p are at P, .... P,, independently of x, t, y.
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There is a unique such function; it is analogous to the Bloch eigenfunction of
a differential operator with periodic coefficients. The coefficients in the asymptotic
expansion of W at k = oo are functions of x, t, y, from which sIutions of a certain
Zakharov-Shabat equation

4- M, = .(L,M]

can be constructed.
These requirements determine a holomorphic line bundle over the Riemann

surface S. The transition functions of this bundle are defined in the finite part of S
from functions which locally realize the divisor (ii), and at 0 by the function (iii).
The bundle depends on x, t, y because of this construction at 0, and it turns out
that the variation with x, t, y is linear in the space of moduli of line bundles, i.e. the
Jacobian variety of R. This leads to the well-known linearization of isospectral
flows on the Jacobian, by means of 0-functions.

The Stokes multiplier problem suggests an analogous construction. In con-
nection with (3.2), for example, we cover the complex plane by six slightly
overlapping sectors. To each point, we attack the group SL(2,C). The transition
functions of an SL(2, C) principal bundle are defined by the Stokes matrices (3.12),
with some modifications to incorporate a v * 0 branch point or a v - n pole. This
construction is not really useful until the discontinuity of Stokes jumps at oc can
be resolved; only a bundle over a non-contractible surface will carry nontrivial
geometric information. Nevertheless, the idea is suggestive and is currently under
investigation. We expect that the bundle will vary with the coefficients x, t, ... in
the exponent O(C); this geometric interpretation should make quite clear that in
any deformation problem, the coefficients of 0(C) are to be regarded as independent
variables. In particular, our method is applicable to classes of nonlinear, non-
autonomous equations in several independent variables (some examples are given
in a report to appear in the Proceedings of the 1979 US-USSR Symposium on
Solitons held in Kiev).
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Ap"Mix I

Here we quote results published in reference [33). It was shown there that the
most general equation with x-dependent coefficients which can be solved by the
inverse scattering transform associated with the th order Qsstem

V.- (CRO + P(x, t)) V, (A. 1)

Ro - (Of$A), P. * J, P=(pj1 ), P- 0, V an n-vector, is

G(DR, t)P, - I(D( , t) CC, P] + F(Dt, t)x[R o, PJ. (A.2)

In (A.2), G, Q, and F are entire functions of an integro-differential operator Dt, C is
a diagonal matrix and the bracket denotes the commutator. The operator D1,

1~ j ___
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which is only applied to off-diagonal matrices H,(h,.), h1 = 0, is defined as follows.

First introduce the matrix (H,),= ), the solution of [R,, (H,)x] = H..

The diagonal counterpart of H. is defined to be HD = - 5 [HF, P]D dy. Secondly,

define the operator D acting on H. to be

DH,- ---H,+[H,,P], + [f[H,,P]Ddy, P]

a-- -- H+[H,P1, H=HF,+HD>. (A.3)

The subscripts F and D in (A.3) denote the off-diagonal and diagonal parts of the
designated matrices, respectively. Finally, DH. , D(H,),. We use the lower limit
o in the definition of HD in a formal manner, to indicate that we simply ignore the
constant of integration. The corresponding t and dependence of V(x, t, 0) is given
by

G(, t) V + F(, t) VC = (xFRo + (Q + S- T)) V. (A.4)

The quantities Q, S, and T are defined as follows. Let f(DR, t) = c wo,(t)D, then
0

Q= coQ4" where Q(=) Q, + Q.,Ct +... + Q C' + CC', and

Qs5 =(Dsx-'[C,P]), S=1, ... , m,

QSD= S Q,,o ),dy,

x

QS = QsF + QsL.

Define the sequences {T}, {S4j in a similar way;

Thj,=(DV 'P,),,TA,, SL7k,,P1DdYTk=TkF+Tk,,k?.l,
X

S17u"(D 1 t'x[RO, P]), S,," 5 [S1 , P'],, dy, S 1- S1 + SID, l 1.X

Then if G - :g,(t)Dk and F, EfAt)DLt,

T- E gjrt) 74k),  7") - T,+ T- _ z+ ... + T, Ck- 1,

$- 7,fpts" ,  SIO ==S,+S,_ C+ ... +SC1 - 1.
Example 1. Let us look at the case where n-2, G-1, Flf1 D, D= 3Di,

P-q(Y 2+Y3), R0 -C0 -- Y1, Y1 =(- ) Y2=(O Y3) -~( - Then
T=O; S-f 1 S")-fjS, -fjxq(Y 2 + Y3); Q-(0 3Q431 -w 3(Q3 +Q 2C+Q 1 Q2 -iY1Q);

- s

Q1-q(Y2+YA) Q2 - qq(Y 2 -Y 3)- q'Y1, 3 7-1q,23(,y) Then,
4'--q5 -2 3 ( 2 Y)
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the Eq. (A.2) is

q,--3(q. - 2q3. + fl(Xq).. (A.5)

Note that the Painlev6 equation can be found by either taking f1  0 and looking

for the solution q(x, t)= - 113 ) or by simply setting f1 = 1 and ignoring

the t-dependence altogether. In fact, all the self-similar solutions of evolution
equations with F=0 can be obtained by taking appropriate functions F and
ignoring the t-dependence. Moreover, there are many equations which are
solvable by the method introduced in this paper and which are not the result of a
self-similar transformation on a solvable evolution equation. Ignoring the t-
dependence, the ' and x equations for V are precisely (3.2) and (3.3) respectively.
Note that the term Q3 + S1 vanishes by virtue of (3.1).

Example 2. We present an equation solvable by our method which is not obtained
as a self-similar limit of an evolution equation. Let R 0 = C= -iY, P = q Y2 + r Y3,
F=, l=D', r=-q*; we obtain qx-+2q 2q*-xq=0. When our method is
applied to this equation, the details are similar to those introduced in Sect. 3.

Example 3. We show that (4.1) is the integrability condition for (4.1), (4.2). Take

n=2, 0=1, G=0, F=-D 2 , R=C=-iY,, P=-q(Y2 +Y) and q=--. Then

Eq. (A.2) reads

(xu.)j - 4 sinh u. (A.5)
XU

We also find that Q= -iY 1, S- - --- !-'-(Y 2 + Y)- isinhu(Y,- Y3)

+ i(I - coshu) Y, Therefore, (A. 1) is

1 . 1 + V 2 (A .6)

v3 =qv I + icv,

and (A.4) is

( i i 1 V2

S) C(A.7)

V2- sinhu- I xu)v 1+ (x- i coshu) V2 .

Appendix i: The Palnlev6 i Family

It is well known [23] that the MKdV equation is only one of an infinite family of
equations, all of which are solvable by the scattering problem (2.12). The equations
of this family can be derived from Hamiltonians £24],

a 6 H2 J+1  (A.8)
Fx 6q

A...___________....... .---- ---.... °"- -
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It is easily shown that a self-similar solution of the form

t 2j+1 ft 2
,
+ 1) (A.9)

exists. The resulting ordinary differential equation for f is again the condition
that a deformation of a system like (3.2) be monodromy preserving; this
time, the asymptotic expansion of P will, of course, involve e" with

r2j+ 1(wJ1  + X). The general autonomous equation of the MKdV family,

q 8 6q (A.10)

where
N

H I cjHj (A.11)
0

with constant c1, does not have self-similar solutions, since the H2j +4 scale
differently. If the c, are time-dependent, however,

zJ+ I
C j fij t2N+ I

then a self-similar solution exists, and is associated with the monodromy for a
system WffiQT7 which gives rise to expansions involving e±O,

Y_ 2j+tI

This is the Painlev II family of nonlinear ordinary differential equations. It is
apparent that all these equations can be reduced to a system of linear singular
integral equations according to the pattern described earlier. Although the
solution method parallels that of Sect. 3, the details are too cumbersome to
reproduce here. It is possible, however, to give compact formulae for the rational
solutions of all these equations (Stokes multipliers zero, and an n-th order pole at

0). This was done in Sect. 3F.
We note that the equations of the Painlev6 II fanly, which we designate as

(PIZ, n) can be generated very quickly by the formalism described in Appendix I.
We take Ro -C- -iY,, P-q(Y2 + Y3). Then the first few equations are:

(PI, 0): oj 1Dx[C, P] + Ditx[R o, P] - 0 ;( A. I13a)

this integrates to

(a +x)q='v (A.13b)

and

(C) - io, + icx. (A. 13c)

(PIT, 1): w3D3 CC, P] + wD 1[C, P] + Dtx[R o, PJ - 0, (A. 14a)

which integrates to
-(03 q,,, - 2q 3) + (0) + x) q v, (A. 14b)

t ii i i l I I [I _ . .. ..4
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with
C 3

8( W3 T + (OIC + icx. (A. 14c)

(PlI,2): sD MCC, P] +W 3D3 C, P] + wO1D [C, P] + Dx(Ro, P] =0, (A.15a)

which integrates to

-SO) [(q. - 2q3). - 2q(2qq.. - q2 - 3q4)]
16

- -(q. - 2q 3)+((0' +x)q=v, (A.I5b)

with

ico5Q +ico3T +itAtC+icx. (A.15c)

The general equation
N

(PII, n): F c 2 ,. c Do' '[C, P] +Dtx[RO,P] =0 (A.16)
r-O

has O) given by (A.12).

Appesilx i

Here we give the explicit connection between the formulae of Sat5 et al. and
Eqs. (4.2), (4.3). In [7, II] it is shown that the basis W, to which we have already
referred in the introduction, satisfies a holonomic system of differential equations.
Applying a formal Laplace transform (transform variable u), Sata et al. obtain a
system of ordinary differential equations in u,

(ud +mAu-G- mAGu-I + F) *(u)=O. (A.17)

The dependence of k on the parameters (a,, 3), j- 1 ..., k, at which points the
solutions of the underlying Dirac equation have multivalued behavior, is provided
by an auxiliary set of equations. We now write down this system when n M 2 and
a-a 2 - Then usingG,, F as given in (7, 1I] and taking1, 12 1 0'

If- n f  w, p
-1 2T we find1K 2 2'

4t US8K

1) +l 1 C - '1 0

- pU K--- 1_ f +) '  (A. 19)

4i - 1) IL -CK mC -G 0 .
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where C - cosh2W, S=sinh2wp. By scaling the components v and V2 by V and
j/i , respectively, and using e= 1, we can eliminate the factors &- I and 9K.

I Iz - i n wih cs
Then, introducing the transformation x=- . t2, u -- 1 -£, in which case
f -it;t,= xv. (where vf=f2W), we find

0)(_ O :xv. (0 1\iLcoshv _sinhv)v
ix k '~ -1/ 2C IOj 2k-sinhv -coshvj)

with q= -- These are our Eqs. (A.6), (A.7), and (4.2) and (4.3).
i2

Appendix IV. The Inversion Equations for PH When v - n

Following the ideas outlined in 3E, we can find the equations analogous to (3.33),
(3.35) when vYn. For eS, they are:

~' 21(~)e ab (2) -0 S.f~'~ ..~___

+ j , d +  y- (A.20)

2 ,ti ,p- e x c-
1c 1 Mixeod  a W (eS W2e

c- '; / c-" € -c - d , (A .2 1 )

In (A.20) and (A.21), C is a contour originating at = - o , travelling on top of the
branch cut along the positive real axis, circling the origin and returning to

So exp 2xi along the lower edge of the branch cut. The parameters s - 2i sin vic
and W2 , Wa are defined in terms of w"), w(2 ) by (3.12). Note that the terms

involving the contour C simply become - Res Woe:", j = 1, 2, when v - n as in this
4.0

case WO is single valued.
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I. INTRODUCTION AND GENERAL DISCUSSION

In earlier papers [l, [2), we used deformation theory to study the Painlevd equat-
ons which govern the self-similar solutions of the modified Korteweg deVries (MKdV)
and sine-Gordon (SG) equations. In doing so we introduced the Inverse Monodromy
Transform (IMT) which parallels the Inverse Scattering Transform (IST); whereas the
latter is used to linearize the initial value problem for certain classes of non-
linear evolution equations, the former allows us to find, by linear methods, an
important class of solutions , the multiphase similarity solutions to these equations.
They are to the standard (one-phase) similarity solutio4ns what multisoliton or finite
gap periodic solutions are to solitons and cnoidal waves.

We begin in section 2 by introducing the family of integrable evolution equations

Ptj Z P i(P'Px"--Pjx ) '  (1.1)

(PJx means the jth derivative of P with respect to x) which are integrability

conditions for a certain eigenvalue problem

Vx = (CR+P(x,t-)iV, -<x<, (1.2)

and associated family

- Q(J)(;;P,- -P(J..)X)V. (1.3)
Vtj;P "(-

Applying a further constraint

V4 S( ;P,---P(n2)x (1.4)

with S rational in C, defines a finite dimensional manifold of solutions common to

a subset J-O,l,--n-l of the equation set (1 1). The manifold is defined by



a nonautonomous, nonlinear ordinary differential equation in x, the coefficients
dopending on x and t., which is the analogue of the Lax-Novikov (LN) [3,4] equation

that defines the finite-gap and multisoliton solutions of the members of (1.1).
There are many parallels between the LN equation and its nonautonomous (NLN) coun-
terpart.

In this paper, we

(1) Introduce the NLN equation and the hierarchy of time flows with which it is
associated.

(2) Show that, with respect to a given symplectic form and Poisson bracket, the
NLN equation (the x-flow) and the conpanion time flow.!s are generated by a se-
quence of commuting Hamiltonians, closely related to those which generate the
multiperiodic flows;

(3) Define and illustrate how the IMT provides a mapping from the old coordinates
PPx--- to new coordinates, the monodromy data M associated with the solution

of (1.4), which admit trivial integration. In the case considered, S is poly-
nomial in of degree (n-1) and so M consists of the Stokes multipliers
{S j}j defined in connection with the rank n irregular singular point at c=-.
*j j=l

(4) Prove that the map is canonical and obtain expressions for the Poisson brackets
of the Stokes multipliers.

Along the way, we

(5) Develop expressions for the infinitesimal changes in the new coordinates in
terms of a natural inner product between the old coordinates and a set of (2n-2)
vectors Vk which act as a basis in the space of dependent variables and which

are formed from the "squared eigenfunctions". These expressions may be used to
calculate the effects of perturbations on the NLN equations (for example, add
a perturbation to the Painlevf equation; does it still retain its special pro-
perties? (see [1])1 and provides a starting point for an attempt to prove a
KAM (Kolmogoroff, Arnold, Moser) theorem - the flow does not, in general, take
place on a compact manifold.

(6) Develop expressions for the new coordinates themselves as inner products be-
tween the old coordinates and Vk'

(7) Write expansions for the infinitesimal changes in the old coordinates and for
the old coordinates themselves in terms of the basis vectors V . The latter pro-
vide expressions for solutions of the Painlevd and related equations in terms
of contour integral representations.

(8) The relation with analogous expressions which arise in connection with the in-
verse scattering transform are explored.

A more general discussion of the ideas presented here, together with additional
material on multiperiodic systems, particle systems and perturbed systems will be
given in a series of forthcoming papers [5]. Our work on these questions was sti-
mulated by several works by Sato, Miwa, Jimbo, Mori and Ueno [6] relating to the
correlation functions of exactly solvable models in statistical mechanics and quan-
tum field theory. In (63, they discuss the Hamiltonian structure of deformation
equations.

it. DEFINING THE EQUATIONS

The inverse scattering transform focuses principal attention on (1.2) where c is
the eigenvalue, R a constant matrix and P( x ) a matrix of potentials which evolve
in time f-(to,t ,---t n) according to (1.1), j=O,--n-l. From (1.2) and (1.3), we
have

1 -- "



P Q Q(J)+R+P,Q(j) 0j = 0,1,2,-- (2.1a)

tj x
Q~) ~k+[(j)Q(k)] 0

Q()Q(k)+(Q= 0, j,k = 0,,2,--- (2.1b)
tk t j

where C , ] it the commutator, We seek solutions of (2.1a) for Q(J) polynomial
in C of degree j

Q(J) = RJ+JZ Q(j) k, (the Q -k are independent of j) (2.2)
k =a j + l -k n(( t h ehJ+ l -c

and the QJ) are solved from the coefficients of Ck (the part of Qj) whichj+l-k j+l- k
does not commute with R) and of Ck-l (the part that does) in (2.1a) (see
£7)). Thed1 st equation in the sequence gives the evolution equation (1.1). The
part ofj+l-k which comnutes with R is determined up to a constant in x (it can

depend on to,tl,--t j1 ) and we take this constant to be zero without loss of gen-

erality. If nonzero, we can make it zero by a transformation in the time coordinates

Example: Define

Y = (-01) Y2= Y3=0 (2.3)

R = -iYl, P = q(Y2+Y3 ), Q(3) Yl

2 1 1 3 iq+ (C2q-4qxx2 3)Y2 +Y 3) + _x(Y2-Y3),

and (1.1) is

q !-( 1 q2 (2.4)qt3 = -4(qxxx-6 x .  24

Finite-gap solutions of (1.1) are obtained by subjecting the vector V in (1.2) and
(1.3) to a further (algebraic) constraint

n-1
Su Vtj+uV x X=V (2.5a)

or
(qX) ,q n~l u Q(J)+uo(r.R+P). (2.5b)(Q-xI)V = o, Q = ni j  2.b

To motivate this choice, consider solutions of (2.6)

q - q(x-ct3 ), X = x-ct3, (2.6)

whence q(X) satisfies

1 XXx3/2q qX = cq X .  (2.7)

In this case Q(3) is a function of C and X. Introduce the change of variables
X=x-ct3 , Tnt 3 and (1.2), (1.3) with j=3 become

Vx - (;R+P(X))V, VT l (Q(3)+c(4R+P))V (2.8)
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respectively. Now set Ve XTV and obtain (2.5) with u =l, uo=c, u 0 j'3. Indeed'
the integrability condition of (1.2) and (2.5b) for tRe values chdsen in the exam-
ple is (2.7). In general, the integrability condition is

n
E ujPt +UoPx = 0. (2.9)

j=l x

From (1.1), we see (2.9) is a nonlinear ordinary differential equation in x for the
matrix P. The finite dimensional solution manifold defined by (2.12) is left in-
wiriant by the flows (1.1). By this we mean that finite-gap solutions considered
as function of x satisfy (2.9) for all values the time parameters. It is well
known (and details have been worked out in several cases [8]) that as functions of
x, it is a completely integrable autonomous Hamiltonian system.

Solutions of (2.9) (as well as their time evolution under (1.1)) can be constructed
explicitly; they are abelian functions. They are closely connected with the Riemann
surface R defined by the polynomial relation r(c,x) = 0 between 4 and X which comes
about by the vanishing of the determinant of Q-XI. The points of the Riemann sur-
face parametrize V(x,t) in (1.2), (1.3) and (2.5b). By proper normalization of V as
eigenvector of (2.5b), one can arrange that it satisfies (1.2) and (1.3) and at the
point(s) at infinity on R,

V - [l+0(.I)]exp (kx+j2lQj(k)tj) (2.10)

k being a local parameter. The Q2(k) are polynomials, usually the dispersion re-
lations of the linearized equations (1.1). In addition, V as function of (c,X) on
R has poles p- which are independent of x and t.. Specification of the surface R,
the poles Usthe asymptotics (2.10) and of a c4rtain normalization conJition de-
termines V 8niquely. Knowing V one can, by differentiation with respect to x, re-
cover P from (1.2).

Now let us turn to a new class of solutions defined by adding another kind of con-
straint on the function V(x,t,4). This time we will ask it to satisfy an ordinary
differential equation in {,

V = ZjtV tj+xV x, (2.11a)

i ( JtjQ(J)+x( R+P))V. (2.11b)

Equation (2.11) has coefficients which are rational functions of ; all dependence
on x,t. is only parametric as far as is concerned. The integrability condition

on (2.11) and (1.2) gives us that (we omit the to flow)
n
ji JtjPtj+(XP)x = 0 (2.12)

which shows that P is a function of the phases x t / 1,--n-l.( 17-n- n

Equation (2.12), the analogue of (2.9),is an ordinary differential equa p8l in x
of order n with coefficients which depend on t . If we begin at time with a

solution of (2.12) and then let it ev6lve for a time t-t(o) in the flows (1.1), then
at time t, it will again satisfy (2.12) with the coefficients tli,---tn evaluated at
the new time

The choice of (2.11) can be motivated with the aid of the example (2.4) which has
the self similar solution

n i i i i m , i i 1 ........ .--
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1(3t3)/3 (3t3)1/3) (2.13a)

1/3and f(X), X = x/(3t3 )
I , satisfies the Painlev6 equation of the second kind

1(f -2f) = Xf-v. (2.13b)

If we choose q to have the form (2.13a) in (1.2) and (1.3) with j=3, then V is a
function of x,t3 and only through the combinations X = x/(3t3)l /3 t /3

Then (1.3), with j=3, becomes (2.11b) with t.=0 j3. In the context of the example,
the integrability condition'of (2.11b) and (i.2) is (2.13b).

Another class of solutions to (1.1) can be found by adding the constraint

= (% Q(J-I)+xR)V (2.14)

which leads to the integrability condition

1i

E a t +xPt 0. (2.15)1 J j-l to

Recall Pt = CR,P] is the scaling flow and Pt, = Px is translation. In order that

(2.14) and (1.3) are compatible (examine the asymptotic behavior of V as -),
.= it.. Equation (2.15) then implies that P(tn tn t2X,to) is a function

only of the n phases

P = P(T n_2,---'lTo) (2.10)

where {TjI -2 are the integration constants defined by solving the equations

dtn-l dtn- 2  dx d(

nt = (n-l)tn_ 1  - d = t (2.17)
n-2-t 2  x

where without loss of generality we can take ntn=l. It is this lass o f solutions
which we discuss when (1.2) is the Zakharov-Shabat system R+P =j-I q "

\r i j

By taking the coefficient matrix in the constraint equation to be a more complicat-
ed combination of rational functions of C, we can of course build more elaborate
classes of s.olutions. In [2), we briefly indicated how to include a combination of
solitons and self-similar solutions. In [5], we describe how to include the x
dependence of the NLN system in different ways.

3. THE ZAKHAROV-SHABAT SYSTEM

3a. The equations: Here (1.2), (1.3) and the constraint equation (2.14) are

iq :V (3.1a)Vx= r %t

V -a(J) b(J)
Vtj = cO) a(j) V, (3.1b)



.I

cv = a bjV, (3.:0 6

the integrability conditions for which are

ax = rb-qc+ic, bx+2icb = 2qa, cx-2i~c = -2ra, (3.2)

a(J) rb(J)-qc b(j )+2i b (j ) = qt.+2qa(J)' 2i c(j ) = r -2ra (3.3)x x

at c(J)b-b(J)c+ca ), bt+2a(J)b = 2b(j)a+ b j ), ct- 2a(J)c = -2c(J)a+;c J)
t i t itj ;(3.4)

3b. The Solutions To (3.2): We seek solutions to (3.2) polynomial in ;. Set

k n-l k n-I kka= b = k-b+, ,-k' c k;_ooCn+l-k .  (35)

We find al=al constant, a2 can be omitted. The ordinary differential equations

(2.12) or (2.15) are formed by terminating the series at C and l respectively.
i': follow the latter course and then the equations are

bn+l =f Cn+l = 0 (3.6)

where b., c., j=2,--n+l are defined

bj+ = bjx-iajq+xq6j 1n ,cj+l
= ".cjx-ia r+r5. ,j=l,---n. (3.7)

The coefficients ai, j=3,--n, are found by noting that the function

= a 2+bc-2i~fxadx (3.8)

is independent of x. We set this equal to
( n n-2 en 2 )2= +---+ + n + 2 (3.9)

and equate the powers of ;n+ in (3.8). For Z=a-2 to Z-=l this equation defines
an+l in terms of the b.,c. already determined to this level from (3.7) and an014
is ,ffectively the additive constant associated with integrating aX in (3.2). For
b=O to b=-n+2, this equation determines ctn+l_)L (an+l,--=2n-l) in terms of the al-
ready known a bh,, jsn and (x, 3 ,c4 ,--a ). For <-n+2, we simply choose an01-1
such that the coefficients of n+J, V<-n+2 are zero. These choices play no role in
the later analysis. We now list the first six coefficients.

-t-~------



a b c 7

1 1 0 0

2 0 -ialq .i I

3. c3+ Slqr/2 cl -a1

x- rx

4. a 4+--(rq -rxq) 4 xx- -2q r 2 )-i 3 r

-a a 3 a a35. _1(q - x-6qrqx)+-qx -- (rx x-6qrr )---r x

( rq +q -r) ia4r (3.101

qri 3 ii

6. + qr + (rqx-v q) (q 6qrq (r 6qrr

-iia{ 2 2 lal1l-(rqxxxqrxxx-rxqxx +-1(rqxx+qrxx-qxrx-3 q rZ) +--(rqxx+qrxx-qxrx- 3q2r~r.

. ia 3 N{ ia{ 3( 2 a4

1+qx rxx-6qjr(rqx-rxq) ) +-742qxx-2q r) +T-qx-i "3 q +-- 4 xx-2qr )--rx-ia 3r

3c. The Solutions of (3.3): We seek polynomial solutions to (3.3) in the form

a(J)-irJ+Jjla(J)- ~ 'k' b(J)=JjIbPJ) kk'o - jilj- k. (3.11)

~~~~0 j+l-k 0 '~C ~

It is simple to verify that a~f-k , b( )-k' c() are simply a n+l-k' bn~1 -k' Cn+lk
when n=j, a1=i,t k=O, k=3--j. For example, a 3)=iO3+1V-,.- l(rqx-rxq). The co bal-

ance in (3.3) gives the ez3lution equations for q and r as functions of t.. Because
of the normalization of a ', the compatibility of (3.2 and (3.3) requirei that

an+l- j = ijt j = 2,--n. (3.12)

We take t rl=0 and omit the tn- 1 flow. We will show very shortly how this dependen-

ce can be reincorporated. In essence, the t 1 flow is simply a restatement of the
NLN equations (3.6) once the particular choi2i of scaling in tox,t2,.. tnl is made.
We can take ntn=l. Also we will take t1=0 as this flow simply mimics the x-flow.
We will often for convenience call x by t . We are left with the x-flow given by
(3.6) and the time flows qtj, rt ' j=0,2,--n-2. We list and discuss the cases n=3,4.

ii
n=3: The x-flow is
b3x 2(a3+ix)q, c3x = -2(a3+ix)r

or

i(qxx2q2 r) - 2ixq, (rxx-alr2) = 2ixr. (3.13)

, x . I I I
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The only time flow is
q -2iq, r 2it. (3.14)

t0 t0

Now let us comment on what this solution has to do with solutions of

1 -(qx-2q 2r) rt 2qr2 (3.15)

If we had left a2t0 and indeed chosen it to be 2it 2 , then (3.13) would, read with -Ll=l,

qt22t=2qtl+xqt 0, rt2+2t2rtl+xrt =0 (3.16)

which means that q and r are functions of

T I = X-t2, To = to+ 2-xt2  (3.17)

Now impose (3.17), and since (3.14) holds, we have

2t 3
q(to, X't2 ) = e'2i 0+-f- xt2) 2~-

0 2t3

r(t ,X,t ) = e2i(toi3 xt2) g(x-t 2 (3.18)

which when subsTituted into (2.15) has f and g satisfying (3.13) with c1=i and x
replaced by x-t 2*

Thus in what follows we simply ignore the equation for qt ' rt and find q,r

as functions of t0,X, t2,--tn-2. Then to incorporate tn ing]mplynFiplace

t0,X t2,---tn-2 by T0 'T-- n-2 which are found by integrating

dt dt n-2 dx dto (3.19)tn -I = (nltn- I x

n=4 The x-flows are

b4x = 2(a4+ix)q, c4x = -2(a4+ix)r

or
-J(q 6 )-ia3q q = 0

r -6 rq )-ia3rx+2ixr 0. (3.20)

The associated time flows are

qt -21q, rt = 21r (3.21)

01 0
qt= rqx-2q2r), r2 = -- rxx-2qr 2 ). (3.22)

Again we may also include solutions to



q (q 6qrq rt I(r x6qrr (3.23)
3t "4(qxxx 6qxrqx ) -rt33

by replacing the solutions

q(toxt 2), r(toxt 2)

by t4  2 2byt 3t 3 t2t3 3

q(t-4--7 + -2 xt3 " x+t,-t 2t3, t2-

and

r(t0 - - 2 _ xt3, t t 3t

o2 31 t3-t2t3, 2-7--)

In the corresponding periodic problem, V in (3.1c) is replaced by AV. This re-
moves the i~x term in a, the function s ii a2+bc and the identification (3.12) is
no longer necessary; the aj are constants. The Lax-Novikov equations are

bnx = 2a nq, cnx = -2ant. (3.24)

3. The Hamiltonian Structure: The function Q generates the Hamiltonian for each
of the flows. In particular

Hj = 4an+l+j, j = O,---n-2. (3.25)

The conjugate variables are

65, Cn+2-j j=2,--n (3.26)

where bj, c, are the coefficients of {-j+2, j=2,--n in the asymptotic expansions for

b c

1+ n-1 a = an+a3C +--- (3.27)

as 4-. We can identify the cn-rect choice of conjugate variables from three
sources:

(i) they are the same as those of the periodic problem (the detailed analysis
leading to these choices is given in C 6);

(ii) the Hamiltonian H_ which generates the scaling flow must decompose into a sum
of products of conjugate variables;

(iii) the choices are necessary in order to define certain inner products correctly.

For now, we will simply take (3.27) as given. The Hamiltonians contain the inde-

pendent variables x,t2,---tn-2. We make the system autonomous by including these

as dependent variables and adding conjugates TI=X,T 2 9--Tn-2 which are defined from

the term rXa dx in Q J-3,--n in such a way that

Hj a T + J(Bk, kX't2--tn_2). (3.28)

From this choice we see that

ii- --



~H. =10

, = tk 7 0, kj(tl=x), O
3k

and so t. is the "time" variable for the flow generated by H.

Let us look in detail at some examples.

n=3: aI = i, t3 
= 0.

Ho = -2i (b2c3+b3 c2)

b2c 
2

H = -2i(b 3c3- 2 42 -.xb2c2+fXb 2c2dx).

The conjugate variables are

b2,b 3 , x and c3,c2, X = -2ifXb 2c2dx.

It is easy to verify that H H generate the flows (3.14) and (3.13),respectively.
Al?-,both H0 and H1 are constats with respect to to and x.

n=4: *l = i, c3 = 21t 2 , c4 
= 0.

H= -21(B 2E4+ 3c3+54 2)

a+a3 2her32 b2 3 b b4 -4 b c2
where 3 = = 3 4 4 4 2= b4------ t2b2
and the c's are defined analogously.

an the { C2sar - +E 4522 6
H( = -2i{E 3(Z4+-'---+ t2)+23(54 -t2 2)

+-2it 2+ 2  2 ) ( 2 3+ 3 2)-x52E2+fxs2E2dx1

-2- sz
H2 = - b2 2  - 22 + t
2 + t2 2)(c4 - + t2c2)-x(62c3+63c2 )

+fx(S 2E3+53E2)-2t2(52 E4+S3E 3+S4c2)}.

Note that the last term in H2 comes from -4ic 3a 5 appearing in the coefficient of

C2in (3.8). The conjugate pairs are (62 ,c4 ), (63,3), (64,c2), (x,X=-2ifX62E2dx),

(t2,T2 a -2Vfx( 2 E3+53 2 )dx).

In particular the form of T2 may be obtained by noting that, since H, generates
the x flow,

T2 3H1d- t-" 2"i(E c3 +6 3E2 )"

In this way, the form of Tk, k=2,--n-2 can always be found from the corresponding H1.
.4]



dfBefore we continue, a convention or notation. means differentiate all variables
j af

in f which depend on tj,including t. itself,keeping tk tj (tI=x) constant. 9t.

means we differentiate f only with respect to explicit t. dependence.

For the multiperiodic case, we define H H,, --H by leaving out the contribut-
ions from 2i;fXadx. We also leave thego a consiahts. Then the conjugate variabl-

es are simply (3.26), the equations are the same with ix replaced by constant CA

n-23e. Poisson Brackets And The Commutability of {H.j}j=o

It is natural to define the.Poisson bracket (t =x, T1=X)

[F-_ - F __a cn+2_j aCn 2 j

n-2 (aF G 3F G . (3.29)
j=O t aT.j aY aT Itj

The first term is the Poisson bracket for the periodic problem and we write this
F,G]p. Note that if

a , a a , a '___ a , _, a )T (3.30)
3 2 a62 a 3  D6 3  9'n aln

1 0 --r0 

k
J 0 ... l 0 (3.31)

00 ---- 0

then

F p = <VF, JVG> (3.32)
n

where <u,v> is j2 uv, the usual inner product. Also, if

F = F(6jzj~tjT

then

dF . F,H=1. (3.33)
dtk k

In [5), we show that fr each j,k =,--n-2,

[HJHk) = 0. (3.34)

Thus each Hj is a constant of the motion for each of the flows generated by the

.... - . . .-:-. . .. _ -- . . ... . . _..---
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other H We therefore have (n-1) independent constants of the motion in involu-
tion. Hhe periodic system, whi'ch has (2n-2) dependent variables, is then complete-
ly integrable. The multiphase self-similar solutions on the other hand are 4n-4
dimensional and thus we need another (n-i) independent constants of the motion.
These new constants are introduced in the next section.

4. The Inverse Monodromy Transform (IMT):

Consider (3.1c),
V -- a b) V (4.1)

c a

with a,b,c, given by (3.5) with an+1=bn+l=cn+l = 0. Then = is an irregular sin-

gular point of rank n and the fundamental solution matrix

(xtj; = (,) (4.2)

admits -he formal asymptotic expansion (see Appendix I) as ,
C:°

I+ -e)e- (4.3)s=l e/

where

iC it n-2" illo-it.2" +-.-+it C +i V+ito+ '4- tnc+o(1),

0 = o(1), Ho = +
4a+l (4.4)

0 has been normalized so as to satisfy (3.1a) and (3.1b). Now, it is known that
in general will not have the asymptotic expansion I in every neighborhood of .
T' , neighborhood naturally divides into 2n equal sectors separated by rays, called
aiti-stokes lines, on which Ree=ReiO n = 0. Define Sk as { ;kIJ>p, n(k-l) rArgc<'k}

and Rk as Argi= M(k-l). Let ¢=(£pj) be a fundamental solution matrix of (4.1) with
kn - -I

asymptotic behavior D in S . The solution ~(O)e is recessive (asymptotically de-

caying whereas *~(I)e-O is dominant (it is unique as it is defined on the initial

ray =O.where 0 is imaginary). Continuing to sector S2 , the recessive solution

becomes the dominant solution 2 in that sector; however, in order that the dominant

solution i in S become the recessive solution in S., we must add a constant
factor (the stoles multiplier) times the recessi~e.solution . In general, the funda-
mental solution matrix 0 'vhich has asymptotic behavior in Sj+l is related to its
preceding neighbor b)

oM+l - ' (4.5)

where M (: s) . If *j is dominant, then s =O, si10. If j is recessive and
sj I

'I dominant, then the nonzero off-diagonal element of Mj occupies the (1,2) position.
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We Icall the set of Stokes multipliers {sj} 2 n1We cll he et o Stkesmultplirsl the monodromy data. M for (4.1). Since

the total monodromy around =- is the identity (as it equals that about =O, an or-
dinary point), only (2n-2) of the set M are independent. For reasons of symmetry
we will choose to work with the set {s ) for kiZ={l,Z,---n-l,n+l,--2n-l}.

One of the central results of our previous papers is: given 'j, j=l,--2n with asymp-

totic behaviors i which satisfy (3.la), (3.1b), (3.1c), and M .(s.) defined by (4.5),

then the stokes multipliers are constants, :independent of t oX,---tn2* This result
is again proved in Section 5.

We therefore have a map from old variables

q(b2,---s n ,x,t'2s---t n-2), P(Cn,--2,X,9T 2,s--T n-2)

to new variables

Q(fl(Sk), .... fn-1 (S k),Xl t ,--t n-2), P(gl(Sk),---gn-l(Sk),,---H n-2 )

where the functions f. and gj are functions of the Stokes multipliers sk'kcZ. In the

new variables the equations are

Sjtk =O, jZ, k = O,l,--n-2,t I = x.

H , j= 0 = O,--n-2, k = O,l,--n-2. (4.6)

tjtk = 6jk j,k = O,---n-2.

Our next goal is to show that this map is canonical. In order to do this, it is
necessary to express the infinitesimal variations 6Q, 6P in terms of 6q, 6p.

5. INFINITESIMAL VARIATIONS AND THE t. DEPENDENCE of k .

5a. Infinitesimal variations: Take the infinitesimal variation of

c a) *2 lb2
and solve by variation of parameters. Integrate the result between c,, which lies

near r=- on R1,and C2,definpd similarly. Since 0 is entire, any path will do. We

find

0-61- *6o = f2 !4l ( 6a 6b) Od (5.2)
C2 1 t 6c Sa

Now use (4.3) and the facts that on RJ,0 , on R240~' M11 and compare the (2,1) ele-

ments of (5.2) to obtain

,-2C2(26aql 2+6c'2)d. (5.3)-6Sl21S tj4+6x;2+6to) -2s16otn+l~n C2 = ¢2 2 _26b* 2+C 1 53

, I
II

whert we havp let 14D , the point at c on RI . We cannot set ¢2=o 2 ,for neither side

I2i
-- ---- --
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of (5.3) converges. However, we make use of the following identities derived from(3..l)

(2a b41 2 C 1 2 d (2iAlp*2 -qi 2 +ryl) (5.4a)

2= 2 ) (j (j) 2

2+2 2 (aJ)b+c(J)
2t 1 2"btb2 +ct l) )I2-b 4j

Also from (A.2 ), we may show that the arguments of the right hand sides of (5.6a)
and (5.6b) have asymptotic behaviors

-2ic 2S +o(l) and -2i sl+o(1) as -on R2

respectively. Therefore we may write
- = 2ia +2 c 2 d C (5.5)

where da 6a-n 2 at.at.,(t1=x) and db, dc are defined similarly

Th,. integral on the right hand side of (5.5) has an asymptotic expansion which con-

sists of(a) terms like e-2e Cp when p<n-l, which are integrable along the rays Rl and

R2 and (b) a term proportional to 1/, on R2. When integrated, this term is exactly

cancelled by 2sI  6an+l £n 2" Thus the limit C- along R2 may be taken and -asl

is well defined.

The calculation may be repeated for any sector. In the odd numbered sectors, one
compares the (2,1) elements of (5.2); for the even onescompare the (1,2) elements.
This results in a change of sign. If cR( oR) is a point which tends to C=- along
Rk" then,

(-Ik) (2daPlp2-dbp2 +dcTP) -12 Sk6a n nk. 1 (5.6)(-1)k 6 sk = n n

where I = (*11 is always the dominant solution in Sk.

Our next task is to rewrite (5.6) taking account of the dependence of aj on the se-

quence of b's and c's. Let us begin with the case n=3.

= dc2  Cfl+o2+ib~) . b )

k

+db2 f_ k+l 2 )d -)i

+dc3  ( k- 2d ) d -
"*k
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Define

00k+ tp~d i kc2nlk+l
k

fCk+l 2 b kn

ook 1 kb2. k+1

Vk (5.8)

2({'J-1 c2*lyi2 )d iSkC 2 nk+l
G k

Defining J as in (3.31) and dR = (dE2,d62,- ,d )T, where (cjS.) are the conju-

gate variables of Section 3, we have

(-1)k sk = <dRJyk>I kcZ, (5.9)

where <u,v> = nuivi , Ry rewriting the identity

-" 2 1d ." s (5.0)

in terms of (bk,ck), we find

-s = <FRJVk>, k4EZ (5.11)

where F Is the matrix {(-I)i+ ij). In Appendix 2, we find the orthogonality relat-

ions for the sequence of vectors V = {Vk}, kEZ,

Mk = <JVkIV> = Tr(dk,_l+Sks ),k<.t, (5.12)

The set V forms a basis in R ,.2 and the relations (5.9), (5.11) and (5.12) allow us

to expand dR and FR in the basis V. Let N=M- then

dR = , _I)Jj14 6s V (5.13)

and

FR = -Z Nj~j sj Vt (5.14)

4~~ ~ ~ - .-.-.
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where in both cases, the summation is over j,Z-Z.

Several remarks are now in order.

1. We can, by the Gram-Schmidt process, choose a new set of vectors U=U k , kEZ,such

that -JUkU > = 6, ,k<. The transfnrmatinn he.twepn II inrl V will dpnpnrl nn

the Stokes multipliers. We will not do this here but will indicate, in the re-
sults which follow, the effects of such a transformation.

2. Equation (5.9) shows us that if R changes in such a way such that dR=O then
6Sk=O. But dR=O. implies

n-2
6R = -JVHt JVHl 6x- =2 JVHk6tk

that is, R changes as a linear combination of the flows generated by 2. Conversely
if 8Sk=0 , then dR=O.

3. Notice that if

dR = -aFR
k

then Ss k = (-I) ksk. However,the right hand side still is jsut the scaling flo and is

proportional to JVHo. The time t dependence (6= d/dt say) of sk (=sk(t=O)e(-l) t

can always be removed by correctly normalizing the asymptotic expansion (4.4).

4. Equation (5.9) is the s , Ling point for a perturbation theory. Using it we
may calculate how a perturbation

dR = cF(R), o<c<<l, (5.15)

affects the Stokes multipliers. In particular, (5.15) may no longer have the special
property that as functions of the phases, the only moving singularities of q,r are
poles. How is this reflected in the change of s.? More generally, it is very na-

tural to ask if an analogue to the KAM (Kolmogoroff, Arnold, Moser) theorem obtains.
The finite dimensional solution manifold for these flows is not necessarily compact,
is not a torus and so the KAM theorem does not directly apply. The potential connec-
tion between a possible preservatfon of the solution manifold and the preservation
of the Painlev6 property is an intriguing one. Also,what would be the analogue of
the tori which are not preserved? Are there resonances? The only frequencies which
appear in the unperturbed problem are constants, either zero or one.

We now return briefly to some further details in the derivation of (5.9). Why, in
general, does the expression

=1/2 2
E /(2da,p 2 -db 2 +dcJ,)

naturally involve the conjugate variables dcj, d5'i? The answer is that the basis

vectors Vk must be carefully constructed in orJer that their inner products can be

calculated. For example, when n=4, ignoring the terms arising from 6t.,

E - dc2(, +ib2 ,,2+b3 ,1,2). - db2( 2,-ic 2  1 2-ic, 1,2)

+ dc3(;t#+ib2 12)'db3( 2Ki~c2 lq2)+dc42-db4 . If one were to define Vk by
k



writing E as an inner product between (dc2 ,db2 ,dc3 ,db3,dc4,db4 )
T and JVk , the for- 17

mula (A.14 of Appendix 2 would not apply. It turns out we must add
1 21I2,2 1 2 1 22-7-31  - 2 2 and -]a 3 p2 - 2 l to the coefficients of dc2 and -db2. Subtracting

these terms from the rest of the expression E leads to a redefinition of b4 and c4

to 64 and c4 " Also there are terms proportional to 6tj left over which combine in

just the correct way to make (5.9) hold. It now also becomes clear why tn+l Must

factor into a sum of products of the conjugate variables. These terms cancel the
potential logarithmic divergences. For n=4, the basis vectors are

f Ck+ l  2. 122, -

k d { 2-i 3/2 1 2 4 2I c3 i 2  p 8 l iskc4 .n k+l

(k+l 222:kdr.{( 2" a32 ) 2+ ib 2  @ + ib 3 @  1 8-2 2- isk 4nCk~

_T' 1{(2 c2 2p1 p 2 5 k 3 n2 k+l

k

Vk= (5.16)

O ki 2 1 2  kb3 nk+l

J k~ 2 . -.
k+l dop2 -is kC2'nEk+l

f k+l
-k dr -i'k 2 k

Recall that the vector VY = i,£2T is the dominant solution in sector Sk -

5b. Poisson brackets of the Stoes multipliers.

We have already defined the Poisson bracket in (3.29). Since Ssk does not

depend on 6X, 6T2 ,---6Tn-2, we have

SOL] !_5L as I ask  asz

a6ji 3E n+2-j 8En+2- j  @Gj

-<VSk'JVs L> (5.17)

- -<(-1)kjV k(-,j 2V > from (5.9),

(p1k+LM
Mk, 

.
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Then the (k,Z) element of P = {Sk,SZJ}, the matrix of Poisson brackets,

is () k+ Define N=M-'I; then the (k,0) element of (P- is (-) k

5c. Preservation of the symplectic form.

We now calculate the symplectic form
n _n-2

j ̂Sn+2_j  2 x t^T

(5.18)n-2

= - < 61R,J6 2R> + 5XA6X + Z (t5A.T'' 22

in terms of the infinitesimal %Aariations of the new coordinates SkX 6 ,Stj,6Hl,6 H.
First, recall that

n-2
8R = dR-JVH 0t 0-JVH 6x- Z JVHk6tk. (5.19)

2

Sond, observe that since

X = Hl-Al(5k,Ekxtk), Tj = H j-A j(BkkXtk), we have

n-2
X 6H1 -</H1 ,6R> - H I x x - Hltk6t k  (5.20)

= 8H1-<VH 1 ,dR> + (<VH 1 ,JVH1>-Hlx )Sx

n-2
+ i (<VHlJVHk>-Hltk)tk'

6T. = 6H.-<VHjdR> + (<VH,JVH -H OxJ 3 3 1 i x
+ n2 JVH H)6t (5.21)
+2 (<VH 'gk "H- tk"k

In (5.20), (.5.21) Hlx means -, the partial derivative of H1 with respect to

explicit x. Also in both 5X,6T., the terms proportional to 6t0 are of the form

<JVH,0 VHk> = [HkHo = 0 (since H is independent of tk and to never explicitly

appears anywhere). In these equations we have also replaced Aks Akx by VHk and
THkx since these are respectively equal. Also we recall that since J =-J, <Ju,v>=

<v,Ju> = -<u,Jv>, After a little calculation we now find,
n-2

W =<- dR,Jd2R> + 6xA+H 1 + t^SHM. (5.22)

The terms proportional to A6tj and 6 tA 6 tk have as coefficients rHjH 1] and [HkH

respectively, which are zero.

J
I. 

-,, • n•m
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But from (5.13),

-<d1R, Jd2R> =-<d1 R,jE (-I)JN j62sj VZ>

-1

= <P 61 s,62S>

where P is the matrix of Poisson brackets. By a judicious choice of basis U such

that <JU,U > = 6 k,1 , k<k, we can arrange combinations f.(s ), g.(s ) jZ such that
nl k k

n-i n-2
= sfj(sk)^6 gj(sk) + 6XA6H 1 + Z 6t.A6H. (5.23)

1,, (5.23), the only variables which depend on x,t. are the variables x,t. j=2,--n-2

themselves. For the tk flow (t I=x) fj gjHIH kk=2,--n-2 are constant and

SHk
tk =3H k

5d. Fourier expansions and contour integral representations.

We focus on the case n=3 and take to=O. The equations (3.13) are

2 2 (.4
qxx-2q r= xq=,rxx2qr2=rxr. (5.24)

From (5.14),

FR =-Zj,£N jSjVz (5.25)
S

with V given by (5.8). In this case, there are six sectors at =-. We will
choose V as being formed from sectors 1,2, 4 and 5 and the relevant Stokes multi-
pliers are SS 2,S4,S5' In this case

1 0 " l-54s5 s2S5 _2 4
N (,l+s 1s.2 )(l+s 4s5 ) 1+45s 0 -S lS5 5 s I4

2s4 -SlS4 1+S1S 2 0

and (clil)

- I~
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C2  r

-b2  -q

3-i rx 2 S s5 s4

- r 2 _ ___ _V 5 . (5.26)
IT 1+ -*S J+i - V2 + --- S S S

31+5x1 S2  1512 14 54 5-iq

Case 1. The connection with the squared eigenfunction expansions of inverse
scatteri ng.

Originally we were looking for a four parameter (complex) family of solutions for
(5.24). Let us look at the two parameter family formed by setting s2=s5=0. Then,

from (5.26) 2 ,21
-- ( ) +- 42/d (5.27)

where p refers to the uniquely defined dominant solution in each of the Sectors 2
and 5. But the 4 in S2 is simply the recessive solution in S, and, since s2=0,
also the recessive solution in S3. Hence zpe-i 33 is a solution of both (3.1a) and

(3.1c) which is analytic for ImC>O and asymptotes to (i1eix as C- in Im>O. This
is precisely the solution 4, we defined in papers 9,7o] 'in connection with the scat-

tering problem (3.1a). Similarly the solution Pe of S5 is what we called ' in
[9] and [10]. Now since the ip of $2(S5) is recessive in SIS3 (S4'6), we may ex-

tend the end points of the integration paths in (5.32) to -= and - on the real
axis. Thus (5.27) becomes

23 -23(2) =~ dfCe ()d +.= S~ 14 (t'dC (5.28)

which is precisely equation 6.55 of reference [10] with

!b 2;i 5 s -2_3I(C = e3 ==s e 3c (5.29)

a a

But if we do define b/a, 5/- in the usual way for (3.1a), then (3.1c) shows that

b(,) = k(O)e21/3 = ,(0)e-2C 3/3 (5.30)
a a a a

and so the stokes multipliers sl and s4 are simply b/a(;=O) and -b/a(4=0) respect-

ively. We showed in 11, that if r=q, s4=s1 . We also know in this case that

b()=-b(-) and a(l)=a(-C) which is consistent.



Case 2. Contour integral representations of Painlevd functions. 21

Again we let =q. From previous work [13 we know s4=s I, Ss=S2 and the tp of

54(S5) is (o o) i(- )where the latter refers to the recessive solution of sector 1

(2). Changing the integration variable in V4 and V5 of (5.26), we obtain

q = l+1s 2 j 2 ('- 2 )dC " 2islq In4 2

(5. 31)
s diJ

3 ( .;) d • 2is 2 q in 3J+SlIS 2 '2 122

where *,( ) are the dominant (recessive) solutions of S1. Now the contour of the

first integral can be extended back to -6 as q) is recessive in S6. Similarly, we

can set the -2 of the second integral to -1. Now the contours are the same as

cnose used in the integral definitions of Airy functions. In particular, if s2=0

which we have shown is equivalent to picking that class of solutions of (5.24)
which decay at x=+- and admit construction by inverse scattering,

q = 2 f(~~ )d (5.32)

In the limit of small amplitudes,

I~ e
and (5. ) is

q = -s ' e2iCx+2i 3 / 3 d4

which is -s If Ai(X/4).

These representations will be very important when we treat the equivalence between
PainlevO equations and particle systems which parallels the analogy between the
finite gap solutions and particle systems [5).

Appendix I: Asymptotic Expansions.

We write equation (3.1c) in the form

V X -(-aYl+bY2 +cY3 )V (A.l)

in the notation (2.3). Let

+ r ) e ' e Y1 " P (A.2)

with

4 l+3X) + +--- (A.3)
•r +C 4 n+1
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63 = n+ - . (A.4)

In (A.3), the integration constant is it , in (A.4) it is zero. By induction, we

show that for k<n 0

Ck = - 2- k+l 3 ) (A.5)

where Bk+l , tk+1 are defined recursively as

k+l = k+l+t
6k1=b+4 3 (a£+c )B k-+ 2 ' c k~l=c k +- (+ )c-+2(A. 6)

2= D2,t3=, c2= 2,%3=c3
•

Also

a =n+l-j = %n+l-j j=2,---n. (A.7)

Affa- this stage, the terms from differentiating the bracket term on the right hand
side of (A.2) enters and disrupts the pattern.

C I--( 2"' + I A 1A
n+l = - 2-n+2 P2)Y2 + n+2 + 22)Y3 ,

n+2 = - -(Bn+3 - iB3)Y2 + (Cn+3 + ie3 )Y3,

C W + 3ig - 1 )
n+3 - n+~~42 4 n+3 2)

+l3 1 A
{C,+4+ -f + n3 V

with 6 n+3 = bg2 , 6n+4 = 3/8(b2c3+b3c 2 ),

ALn+4 = 3n+4 + 1/8(b2c3-b3c2 )"

In particular we often have occasion to need to calculate on R, and R2 as

;--. On RI, *-()e , and thus l 2~0. On R2 , however, ~(lo)ee-s1(O)e'e and thus

*1'2--Sl. In order to calculate the behavior of the components of Vk, we need to
keep more terms in the expansions.

Appendix II: The inner product (5.12).

We will illustrate the means of proof in the case n=3. Let us examine



00, 2 W2+ib'p')dCis b Zn f'3 d+iS c Pn 23- C 'dci c kn in ! ni

<JV 1 ,V2>= + (A.g)
Iqdc-i s b 2ZnC 2  (2C 2 2)dc+i s 2cn

1 1 2 c+ 2 12 2 233

frl 2 1

is the dominant solution of Sl and ', the recessive solution of SlV is zhe domi-

nant solution of S2. We take c+ to be closer to C=_ than C2 on R2. The product in
in (A.9) has three sets of terms. First, the terms in products of logorithms cancel.

Next, the terms proportional to +is2 tog ; are

(2 2 2
Cl (c 2 . 3 ) l + (b2 +b3 )i)d =(*

which in the limit of {iC2 tending to C=- on RI,R 2 respectively is -sI (use Appen-

dix 1). Similarly the terms proportional to-isi InC2 are -s2.  Hence these two+

terms together contribute -i S, S2Ln 3/,,. Next we examine the integral terms which

may be written

f 3 f12 2dd- {(4+ ) (12-2 2 2 --ib2 2-  2  (A.l1)

2 +

where C lies in the path between {ic2 and 4' on the path between C2, 3. Now the

integral is b
a/-a ,' (2-2 _ 22)( - 012--. -.2)

-f i-i;{.* + € -

-2

+ (A.12)

_________________________________________
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We have an identity: If A,B,C satisfy

AC = C+yB, B+2oB =20A, CC-2aC = 2yA (A.13)

and A',B',C" satisfy the same equations with C replaced by c', then

(o-a-)(BC'-B'C) + (S-B')(A'C-AC ) + (y-y')(A'B-AB')

1 (d + -)(2AA'-B'C-BC'). (A.14)

22 
dC d2

Now, in our case A:P1l,2, Bip, C--2  , :, =b/ Y=C! and thus (A.ll) is

+ dCd _ W(,'__)

-2 J3 f 2 ddv d + d (A.15)

d3 Cd d -d;

where

Integrating we obtain (A.ll) is

" 2 dc - - d '. (A.16)

Now, we take the oath between l and 2 to be in along Rl to the =O and out along

R2 . To integrate the third integral, we recognize that ' is recessive in S and+1

bring the contour from C2 from Arg r T- to Arg C=O, then in aloog Rl and out R

to e. This means we must take account of the pole at C'=S 2 and since

Res. W( 2 -W( 2 = -1, since *,l2-l, 2 is the Wronskian.. Hence from
C4 2 2 ".4

the third inteqral we obtain the extra term -fl2(-2ii)(-1) =.T. fow on the neutral
rays, the only terms which will contribute as ,, tend to infinity are those

along rays where W( ,4') tends to a constant. This only happens when lies on R2 ,

Con R 3 whence W(C. '+2SlS2 , and thus the remaining terms in (A.16) tend asympto-

tically to +

is 1 s 2 f 2 d_ 2 i Qsd- "

Hence + + (2
<J i 2-C3 3- 2 3

<JVp, 2> = - i 2  n -C+ + 'ss2 ' "2n 32 = Is(+sls:2).
"3 -(2

It is easy to see that if S and S (k<t) are not contiguous sectors, the contri-
bution from the pole disapp ars. hence we have

ll" - Nil. ililm--iiV I I l I lI ,,
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<JVkV > = (n6k ,.1 + Sks 1) (A. 17)

This formula also holds for all n>3.
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We introduce a new class of solutions to
integrable nonlinear evolution equations

which are thought to have adeepconnection
with the n-point correlation functions of

exactly solvable models in statistical
mechanics.

1. INTROOUCTION

In our earlier paper I1], we used deformation theory to study the PainlevA equa-
tions which govern the self-similar solutions of the modified KdV (MKdV) and
sinh-Gordon equations. Here we introduce a wider class of solutions of these and
related equations: the multiphase similarity solutions. These are supposed to be
to the standard (one-phase) similarity solutions what multi-soliton or finite-gap
periodic solutions are to solitons and cnoidal waves.

Our study of multiphase similarity solutions originated in attempts to understand
the work of Sato, Miwa and Jimbo [2] on the scaling limit of the n-point correla-
tion functions of the Ising model. The 2-point function can be expressed in
terms of the 3 rd PainievA transcendent C33; the same Paniev function also

governs the selfsimilar solution of the sinh-Gordon equation. It was shown in
C21 that the Ising n-point function is expressible by what appears to be a multi-
variable generalization of Painlev6 transcendents. We conjecture that these many
phase Palnlevl functions are somehow analogous to the 8-functions which afford
formulas for finite-gap solutions of integrable systems, and that correspondingly
the concept of similarity should have a natural generalization to many phases.
The present note reports some preliminary work in this direction.

Our earlier approach [1] to Painlev6 equations leads to a very natural definition
of multiphase similarity solutions. We explain the definition, and the philos-
ophy behind it, for the MKdV family; it will be clear how to adapt it to other
systems. The Ising n-point functions fit into the same framework, as we describe
below. The analytical properties of multiphase similarity solutions, and the
geometric theory underlying their definition, are not yet understood. We limit
ourselves to a description of the basic facts and of some very suggestive anal-
ogies with the Riemann-surface theory of finite-gap solutions. In particular, we
will write down an equation which describes the shape of the multlphase similar-
Ity solution as function of x; we will also give the equation which describes the
interaction of a similarity solution with a sollton.

We believe that a thorough study of similarity solutions of Integrable systems
will require the development of interesting new mathematical lde43. A hint of
the results to be discovered may be found in some early papers of Garnier [4,51.
These contain the beginning of a theory of partial differential equations with
fixed critical points; the solutions of such equations appear to be generaliza-
tions of abelian functions (if one adopts the point of view from which Painlev&

203
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transcendents are seen as generalization of elliptic functions). As far as we
know, Garnier's ideas have not been developed during the past 60 years; some re-
interpretation of his work in the context of soliton theory will be given in "61
and in a paper (in preparation) which will elaborate on the present note.

2. REVIEW OF FINITE-GAP SOLUTIONS.

We consider nonlinear evolution equations for the elements of an N x N matrix P,
arising as integrability conditions for the linear systems [7

Vx (x,) = (C R0 + P(x,))V(xJ) (2.1)

Vt J Q(j)(x, 0V(x,) (2.2)

Here t=(t,,...,tn), V is an N-vector, R is a constant diagonal matrix (i j8jk)

and the are matrices which depend polynomially on the parameter C and on
P'P xy... . For simplicity, we do not at this time allow dependence of Q(Jj c,

C-; see Section 5 for a more general situation. For a definition of QU) -
the appendix.

The conditions V xt V etc. imply

P -t J + CP,A J)] = 0 (2.3)

Q t Q(J) t + [Q(i),(J)] = 0 (2.14)

Example: R =[] (

Q (3 [ 41 -2 q 2 C 4 2q + 2i x -xx +23
Q) 2 q-21Cqx-qxx + 2q3  4iC3 + 2q 2C

Then (2.3)1 and (2.3)3 are the first two equations in the MKdV hierarchy,

qt1 qx) q 6q 2qx " q xxx.
q1 t3

A somewhat more complicated choice for Q(5) leads to the next MkdV equation,

qt . (q x 1Oq2 qxx - 10 qqx 2 
+ 6q

5
).

Conditions (2.14) hold automatically, because the NKdV flows commute [8]. Thus we
may and do think of q as function of x and tl,...,t simultaneously, satisfying
the Jth equation of the MKdV hierarchy in the variacle tj.

We are Interested in special solutions of (2.3), solutions which in some sense
have finitely many degrees of freedom. For MKdV, for example, one has rational

1m
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r9] or multisoliton solutions r1011 both of which are special cases of the

finite-gap solutions. We summarize the facts needed for our later discussion.

Finite-gap solutions are obtained by subjecting the vector V in (2.1), (2.2) to a
further (algebraic) constraint:

n
nuV = xV (2.5)

or equivalently

Z u uQ (J  X ) V = 0. .)

%2.6) has a nontrivial solution only if the determinant of Zu Q
' ) 

-XI vanishes.

Cross-differentiation of k2.5) and (2.1) leads to J

n
ZuP = 0. (2.7)

This is a further restriction on the matrix P, supplementing k2.3)1 and consistent
with it. Specifically, from (2.3)j one sees that Pt, is a polynomial in P,P,,

so that (2.7) is an ordinary differential equation in x for the matrix P. The
finite-dimensional solution manifold of this equation is left invariant by the

flows 2.3). (2.7) is often called a Lax-Novikov equation :11,12].

Solutions of the equation (2.7) (as will as their time evolution under (2.3)j can
be constructed explicitly; they are abelian functions. The connection with
Riemann surfaces comes about as follows. The vanishing of the determinant in

(2.6) Imposes a polynomial relation r(Cx) = 0 between C and X. The points of the

Riemann surface

R: r(x) =0 (2.8)

parametrize V(x,t) in (2.1), (2.3), (2.6). By proper normalization of V as
eigenvector of (2.7), one can arrange that at the point(s) at infinity of (2.8),

V - C1 + 0(2)] exp (kx + q (k)t +.. q(k)t (2.9)

k being a local parameter. The qj(k) are polynomials, usually the dispersion
relation of the linearized equation (2.3)J . In addition, V as function of (e,k)
on R has poles 4k which are independent of x and t Specification of the surface

R, the poles LkP the asymptotics (2.9), and of a cirtain normalization condition
determines V uniquely. Knowing V one can, by differentiation with respect to x,
recover P(xt) from (2.1).

For details of this theory, we refer to [13]. In the next =ection, we develop a
difinition of multiphase similarity solution along the same lines.

3. MULTIPIHASE SIMILARITY SOLUTIONS

We a ain impose a supplementary constraint on the solution of the linear system
(2.11, (2.2). The constraint Is now not algebraic, but Is given by a differential
equation In C:

' .. . I _ l I l i - -' l *1



206 H. Flaschka and A. C Newell Multiphase simiarity solutions

n
CVC . E Jtj Vtj + XVx V3t1)

I i

or
n 

0

CV = ( . it jQJ) + x(CR0 + P)) V. (3.2)

Equation (3.2) has coefficients which are rational functions of C; all dependence
on x and the tj is only parametric as far as C is concerned.

The integrabilty conditions (2 .3)j, (2.4) are now supplemented by V =, VxC
etc.)

0 = (xP)x + ZjtjPt (33)

Just as in Section 2, we are specifying a particular class of solutions by con-
straints on the C-dependence of V(x,t,C). In Section 2, V was seen to be mero-
morphic on a Riemann surface r(C,%)=O. Equation (3.2), as we review below (see
[1 for more discussion) also imposes certain global behavior on the function
C V(C). This behavior will be seen to characterize V.

(3.3) is the analog of the Lax-Novikov equation (2.T). For fixed i, it is a non-
autonomous o.d.e. in x. A solution of this o,d.e., after evolving under the flows
(2.3)j, will at any later tj again satisy (3.3) (with new coefficients tj).

To see in what sense (3.3) exhibits similarity behavior, consider the MKdV
example, and the simplest case of (3.3),

(xP) X + 3t3 P 0 0. (3.4)

Written out, this is:

(xq) + 3t3 (6q
2qx - q xxx . (3.5)

The characteristics of (3.4) are given by

dx dt3

x 3t3
and q(xlt 3 ) has the form (3t3)_'i/(x(3t3 1)/3). So q(x,t3 ) is self-similar, and

by (3.5) it satisfies the MKdV equation, qt 6q2 qx - qxxx- ; as function of the

similarity variable X(3t3 )
" / 

= satisfies the second Painleve equation,

which we studied in C1.

The general equation (3.3) has characteristics

I
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dx = dt = dt

3t.ntx I  n

and its solution will be of the form

P = x 1 P (xt. ... , x(tn ) -/n).

We now explain in what sense (3.3) is a natural generalization of a standard self
similarity condition such as (3.5). The difficulty is that there is not, In the
literature, a well-developed concept of multiphase similarity. The notion of
multiply periodic quasiperiodic or almost periodic) wave trains is, on the other
hand, well understood. Our definition is based on certain properties of the
solutlons-of (3.2), which are analogous to properties of V(x,t,(C,.)) described
in Section 2 in connection with the theory of finite-gap potentials.

(3.2) is a system with an irregular singular point at C - - and a regular singular
point at C - 0. The solution V(C) of such a system is completely characterized by
the so-called monodromy data [1]. For clarity, we describe these data for the
special example

CV = (t3Q(3) + t5Q(5) + xP) V (3.6)

in the MKdV case.

1) Near C = , (3.6) has i formal fundamental solution

9 = i(5t C5 + 3t3 3 + xc), where C 0 Cj is a formal Laurent series. In

each sector sj, 7-(J-1) g arg C << J there exists a true solution Y for which Y

is an asymptotic expansion (in S). Then Y+17 yJA]; the A are called Stokes

matrices.

2) Near 0 , 0, (3.6) has a solution of the form

*(x't')" = (x't') [ 0 + ]

u I is a constant of integration of (3.3) C11; if v - half-integer, there may be
logarithms in the series as well. The monodromy matrix at * 0 is J,

(Ce 2 i ) - I(C) J.

3) A connection matrix is needed to specify the relation between 1(normallzed
at 0 - O) and Y1 (normalized at -= in sector Si):

I - Y1 A.

One then has the following result (just as in [1.):

All matrices Al,...,A1 o, J, A are independent of x, t3 , t5, Iff Vx -(CRo+P)V ,
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= t (3)V, and V Q 5)V. Equivalently, the self-similar equation

xq + 3t k2q3 _qq q + 5t q -L 0q2 q x 1qqx2 + 6 q5 ) . v 13.7)3 xx 5' xxxx xx x

Is the condition that a deformation of the system (3.6) leave the monodromy of
its solutions invariant.

Following [l], it is possible to reconstruct t, given Alp...,A 10 , J, A and

g(x,t3,t5 ), through the solution of a system of linear singular integral equation.

Knowing YV one can reconstruct q from the equation Y = (CRo+P)l ,  In prin-

ciple, the solution of (3.7) has thereby been reduced to a linear problem.

It will be clear that analogous considerations apply to the general equation
3.3). The number of sectors (and hence of Stokes matrices) will increase, and
explicit computations will become quite unmanageable. In principle, however, the
fundamental solution of 03.1) (and hence the potential P) can always be recon-
structed from knowledge of the monodromy data and of the exponent 9 in the
asymptotic expansion.

It Is of particular interest in this connection that the only occurrence of x,tj
among the data characterizing the fundamental solution of (3.1) is in the ex-
ponent e. In the general MKdV case, for example,

x (X't Y0 '( I:e O e

where 9 - Z JtjC J. This, it will be remembered from Section 2, is exactly the

situation encountered in the finite-gap theory (see equation (2.9)). Indeed, the
relationship between the analyticity properties of V(C) discussed in Sections 2,3
goes quite far. In Section 2, V was meromorph'ic on a Riemann surface, except at
- where it was seen to have an essential singularity, with behavior e9 times a
convergent power series (i.e., Stokes matrices are all the identity). In Section
3, V is meromorphic on a possibly Infinite-sheeted covering of the sphere (deter-
mined by the nature of the regular singular point at C - 0), except at - where it
has an essential singularity, with a behavior of e9 times an asymptotic power
series (Stokes matrices are not the identity).

This point of view, on the one hand, places our definition of "multiphase
similarity' In contact with the well-developed quasipariodic theory, and makes it
more motivated than it might have seemed at first glance. On the Other hand, this
perspective suggests further generalizations of the solutions presented here.
Namely, one may consider systems of differential equations on compact Riemann sur-
faces, with various regular and irregular singular points. The deformations pre-
serving monodromy will lead to nonlinear equations including, but extending, the
equations described above. One such equation, based on work of K. Ueno [14], is
given In Section 6.

4. THE PERIODIC LIMIT

There is a remarkable principle, so far not really explained but supported by all
examples known to us. The nonlinear equations arising from mondromy-preserving
deformations are not autonomous (the Independent variables, such as x,tj above,
enter explicitly). Replace the explicit independent variables by constants. The
resulting autonomous equations are solvable In terms of abellan functions (and in

•J
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particular by Krichever's method [13]). One very interesting example, due to
Gamnier [5), is studied in C6]. Here we describe, in a formal way, the situation
for equation 03.3).

In equations 3.2), (3.3)

CC= (Eji u) +xC )V
1 0

(xP) + Zjt P =0,

take t j u,t, and let t -. -. Then (3.3) becomes the Lax-Novikov equation

(2.7). ln-(3.2 , one now has the small parameter t-L in front of the derivatives,
so a WKBJ approximation

CV -V 0 exp S, S -t T X%1') <C

Is natural, The eikonal equation is

(Q - Xi)VO = 0, k,4.1)

where Q = LAu Q1. This is precisely (2.7): the vanishing of the determinant in

(4.1) defines the Riemann surface of the finite-gap theory.

The large t behavior of the solutions of (3.3) is therefore formalIly given by
abelian functions; this is related to the familiar fact (cf. [1.51) that Painlev6
transcendents are asymptotically described by modulated elliptic functions. Such
approximations are known not to be uniformly valid even in the single-phase case,
and precise results will require much more study.

5. FIRST-ORDER MATRIX SYSTEMS

Here we consider briefly the similarity solutions of the systems arising as in-
tegrability condition of

ft R + P )v (5.1)

V C1 %Qv, (5.2)

where Rt diag (0,...,l,....O) (1 in the J-th place), P~ = RJ for some fixed

n x n matrix P, and Q Is independenc of ~

Cross-dif ferentiation results In the following set of equations.

a) jX k P k,x [ E~'k) 0

b) Qkt Q % t

C) I~j Qk' = (5.3)

..

5)Q~ J k
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For the case n-2, with x=xI-x2 , t=tI-t2  (5.3) includes the sine- or sinh-Gordon

equation. General results about evolution equations of the form t5.3) have been
obthined by Newell [7] amd Dubrovin [16]. Dubrovin studies finite-gap potentials
for the system 5.L)- In his theory, there is no distinguished "eigenvalue pro-
blem" in x. Rather, the n variables x. are on equal footing; if one insists onJ

taking a linear combination .ajVxj of iS.L), with x=Eajxj, as a basic scattering

problem, the other xj play the role of time parameters for comnuting flows which

define a manifold of finite-gap potentials.

The algebraic constraint (cf. Section 2) leading to finite-gap potentials is, in
this example,

Zu V - Zuj Vt =XV.

The non-algebraic constraint (cf. Section 3) leading to similarity solutions is

CV .= Zx .V xj t V t = E(xj(CRj+P.) - C1tjQj )V. (5.4)

Compatibility of (5.4) and (5.1), (5.2) requires

Pk + Z(XjPk,x - tjPk,t ) 0, (5.5)

L (XjQk,x - t jQk,t ) = 0. (5.6)

The monodromy structure of (5.4) is now due to two irregular singular points, at
C=0 and C-w. The behavior of V at these points will be

exp(cxjRj)V_ at -

exp(C-'tjRj)V 0 at 0.

Stokes multiplier matrices will be defined across the anti-Stokes lines
lm(x -xk)%-0, and again equations (5.1), (5.2) and (5.5), (5.6) are a consequence
nf tIe requirement that the Stokes matrices, as well as the C=O to C-a connection
matrix, be Independent of xj,tj.

This example is particularly interesting because the deformation equations (5.3),
(5.5), (5.6) are Just the equations whose solutions ware shown by Saa, Miwa and

Jimbo to govern the scaling limit of the Ising n-point funtions TnktP),.,

(xn,tn)). It appears from the above sketci that the theory of these functions is
closely related to conventional soliton ma.hematics. Various aspects of this
connection are now under investigation.

6. ADDITIONAL EXAMPLES

In C13, we derived formulae for the rational solutions of PainlevA II and of the
other equations In the PainlevA II hlerar;hy (i.e., the self-similar solutions of
the higher MKdV equations). These solutiois are characterized by the following
monodromy data: all Stokes matrices are the identity, the exponent v at C-O is an
Integer, and the polynomial e in the asymptutic expansion is

il i l -
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n 2J 1
e =Z (2j+l)t 2 1  . The resulting solutions are rational functions of t,,to

For N-2, for example, with the notation t1=x, t3 =t, t5=y, we have

q(x,t,y)= 3
x 2 , y+ x2 *+-2/15x

5

S+3 t  xy-t 2 +tx 3 /3 +x6/15

Such rational solutions are intermediate between finite-gap potentials and multi-
phase-selfsimilar solutions, being a degenerate case of both types. A rather more

Interesting example is afforded by results of Ueno ri.4j. We rephrase Ueno's con-
struction along the lines developed by Manin [IT]. When q(x) is a one-soliton
potential for MKdV, the eigenfunction V(x,C) of the scattering problem (2.1) is

meromorphic on a rational curve with three double points (Ueno uses a characteri-
zation of Date according to which the fundamental matrix of (2.1) assumes a Jordan
form at those three points; the points are + the soliton eigenvalue). At r=c, V

has the asymptotic behavior C expi(Cx+C
3 t) familiar from scattering theory. It

follows that C41V(C) satisfies on the rational curve a system of differential
equations with an irregular singular point at e=w, the Stokes matrices being the
identity, or equivalently, on the Riemann sphere, a system with apparent (re-
movable; see appendix) singularities at the double points, and again an irregular
singular point at -.

One can modify Ueno's linear system for V to produce a system, still with co-
efficients rational in C, whose solutions may have nonzero Stokes multipliers at
M. The condition that the mondromy of V be preserved under deformation is again
the MKdV scattering equation (2.1). Referring to the general system Introduced
in the appendix, we take

F=ID3 + 12DR  0. D5 + 20 + S0 R

whence the equation is

(xq) + 4Aq - 41 
2 xq - 1 2 4

- (qxx-2q3) + 40q - 4K, K a constant (6.1)

Ax .- (xq)x q, A(-) - 0.

The corresponding equation for V as function of C has the property that if (a) the
Stokes multipliers at . are zero, (b) C-0 Is an ordinary point (i.e. K-0), and (c)
the indiclal roots at the apparent singularities =± il are -1,0, then the solu-
tion of (6.1) Is precisely the soliton q - 21T1 Sech 211(x-xo) of the KdV family.

If the Stokes multipliers are not zero, we conjecture, and support this conjecture
below with some corroborative evidence, that the shape q(x) describes the inter-
action of a soliton with a one-phase similarity solution of MKdV.

First, as a heuristic guide, let us consider the case K=0 and imagine that q(x)
decays to zdro at ± a so that the scattering data connected with the elgenvalue
problem (2.1) are defined. Using (A.5) we find

a = -dA) a, b =2iC
2 b I 2-A(-u) b. (6.2)

CC 2+12 C C 2 +412
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The choices A-m) - "21 = 20 gives us

• 1 1/3 .)

a= , b=be 2  6

which is the scattering data for the superposition of a soliton of amplitude 2ij
and a single phase similarity solution. Further if we take the limit J= 0 and
again assume q_6O as x-#+= we find

xq =1/4(qxx-2q3 ); "6.4)

that is, q satisfies the one phase selfsimilar equation. Note that if (6.4)
holds,

4Aq =q(qqx- 1/2q2 - 3/2q4).

We also observe that as 1-, (6.4) is again sat:sfied. We may interpret this as
follows. Consider the shape q(x) to consist of a well separated soliton q= 2i
Sech 21(x-x0 ) and a2 solution of (6.4). If I is large we may neglect all the terms
not multiplied by wi en x)x0 =O(1). Thus, away from the soliton qs=2nSech 211x-
x0 ) (which is an exact solution of (6.i) with K=0), the reduced equation 6.4)
describes the shape of q(x). Consider q(x)=qS(x)+4(x). Then A(x)=As(x)+A~x) =

-xqS2 /2 + 1(tanh 21(x-xo)-I) -1/4( jXX-./2i2 -3/2 4 ) and q satisfies (6.-4).

2
Furthermore, if we take K=j , we may interpret one solution of (6.1) as describing
the shape of a soliton qs=2ijSech 211(x-xo) and a rational solution i(x)=1/x-c.

The corresponding A(x)= -xq5
2 /2 + 1(tanh 21(x-x)-I)- C Now, if x0 >. c,

2(x-c)
2  f

then in the neighborhood of x=c, A(x),-21----(--)2 and substitution of this and2 (x-c)

q(x) = - into (6.1) gives c=-1/1. On the other hand, if xO << c, then in the
x-c

neighborhood of x=c, A(x) - C and c=1/1. Thus the phase shift experi-

2(x-c)2

enced by the rational solution as the soliton goes from x0 = - to x0 =O + is 2/1.

This analysis suggests that the structures which are described by the ordinary
differential equations (3.3), (3.5), (3.7) are intimately connected to the nature
Of the singular points of the constraining V equation (3.2). Associated with the

regular singular point is a phase e- Z(2+1)t2t41 €2J+1 + Cx which, through a re-

scaling of C, Is a function of x(tr)-]lr,r=1,...n, and a set of Stokes multipliers
which prescribe the amplitudes of the multiphase similarity solutions. Associated
with the apparent singular points 1-±ilk and c-0 are soliton structures and
rational solutions (which are a limiting case of solitons) respectively. A more
complicated choice of F(C) (see appendix; in (3.2), F(C) - C) In the constraining
equation (3.2) has the effect of adding more singular points. The interpretation
of the corresponding solution q(x) in these cases is still an open question.

7. A BACKLUND TRANSFORMATION

We now consider Ueno's monodromy problem [14], and our generalization, from the
point of view of Blcklund transformations. (ST) It is easy to see that in Manin's
language C173), the addition of a soliton by a ST amounts to the identification of
an additional pair of points on the Rlemann sphere. That Is, in the pure-soliton
case, a ST creates an apparent singularity in the C-behavior of the Jost functions
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of scattering theory. We will see that the same situation obtains in the
Painlevi setting.

Consider the usual scattering problem for MKdV,

V1 + i*V = qV21X2

,7.1)
V2  - icV2  = qV1.

Our considerations are local in x, and boundary conditions play no role. Fix a
particular r=ij, and a solution V(x,ij) of J7.1). Define

V (x, i,)

V2 (x'il)

The x-part of the ST transforms q(x) into the new potential Q,

Q= q -21dtanhfl q 2x (7.2)
dx 1-17 2(72

The eigenfunctions V(x,C) of (1) yield eigenfunctions W(x,C) of

w1  + iCW1 = QW 2

X (7 3)
w2 icw2  = QW1

by the formula

W= (iC + I + 211 ) V + 2 V
f2_- 1 1- 2

(7.4)

w lv + (fi -i +--1) V2 - 1 r 2.1 2

The verification Is straightforward.

If we know the C-behavlor of solutions of (7.1), we can read off the C-behavior
of solutions of (7.3) from formulas (7.4). The effect of the transformation (7.4)
is easy to ascertain. No poles or branch points are added, and the Stokes multi-
pliers of V remain unchanged. The formal monodromy at C=. is increased by 1.
The only other change is the addition of apparent singular points at -t±i. This
is clear because the determinant of the transformation (7.4) vanishes at ,-+ij;
two solutions of (7.1) wh Ich are Independent at all C will be transformed into
two solutions of (T.3) which are independent at all C except +111. This is the
symptom of an apparent singular point.

For example, start with q-O, and let V - (e. x). Then

Cfl-a e x a 211(x' ) .2

2.
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and

Q - rj cosech 2n;

is the (singular) one-soliton potential.

The elgenfunctions of (7.3), as computed from the independent solutions

a"ix(0), elx(?) of (7.1) have:

i) zero Stokes multipliers;
(ii) formal monodromy at =,L1;

(i) apparent singular points (with exponents 0,1) at C-+1".

One can check this on the explicit formulas:

-IT + 1-a - C

21 1 .~l j~ ~

2~ 1

(2) = L x
1+-e 4 - ,

This is exactly the kind of normalized solution used by Ueno 114].

To complete the monodromy Information, one must set up the solutions normalized
at C!+i , and compute the connection matrices-from +1l to -. Following C14], we
require the solutions near C=-+ij to look like

()(,)-T(+t)(x)(C "'
T 

0) T(!
+ )

x)((,C (T5

0 ) - (7.5

where

* -)(x,*l'r) = I

and Y(-) is the solution of a dlagonalized C-equation,

y - ( + holomorphic Yvt}
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Near C=ij, for exam l1, one finds ( ) =A (+ )  , here the
connection matrix A +) has the form

(+) C a
A = 2.

-C2 b

CI C2 are as in the definition of I", CI/C= 
21x 0 . a,b are functions of x, in

the ratio a/b = -ie' 4-qXe 6 x °.  It is important to note that the whole connection
matrix A+) is not required to be independent of x; the correct condition [14" is

JA4 + ) A(+)-'J = 0, (7.6)
2.0 C1

with J -1 0 ). The deformation condition (7. ) says that (a)x 0 0. Note that
00 2

the ratio C1/C2 determines the single free parameter in the one-soliton potential.

It is easy to see that it is precisely the ratio C1/C2 which is fixed by the

normalization (T.5); there is some freedom in the determination of T, in that
each column may be multiplied by a constant without affecting the other condi-
tions.

It is now evident that a similar procedure will add apparent singular points at
+il, with +i1-to- connection matrices

C I a+

(-C a2  b +

to the eigenfunctions of any potential q. In particular, we may take for q a
solution of Painlevi II,

qxx - 2q' + xq - V.

All of the monodromy data listed in C11 are unchanged after (4), with the ex-
ception of the monodromy at ® (which Was zero, and is now 1), and of course the
_+ij data are added.

The condition that te mooodromy be independent of K then leads to the nonlinear
system (6.1).

One computable example is afforded by the rational PainIev4 solution q(x) -
With x

V (x,,, I a 271 eTlx + b 21x an x ,

2,x

we find

• -j
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Q a 2 _ b2e x . ,b 2xe2 x ]
(a+be 21X) 

2  
+ jx(a i- b ie lX )

Note that Q has the limiting forms

Q aQ = -i , a C

b -01'

which reconfirms our earlier computation.

This sort of explicit result is reassuring, but the main points of interest are
more theoretical.

(1) (6.1) is the 5th -order'equation. Our example covers only a 3-parameter
family of solutions. The place of the other solutions in the isospectral
framework is still unknown.

(2) The equations (6.1) must be degenerate forms of deformation equations of a
monodromy problem set on an elliptic (or hyperelliptic; the MKdV traveling
wave is associated with a genus 2 Riemann surface). Riemann surface,
with irregular singularity at the point at infinity. Those equations
have yet to be analyzed.

8. CONCLUSION

The main purpose of this note is to draw attention to the mathematical problems
connected with the notion of "multiphase similarity solution," and to the in-
teresting physical applications which are still to be worked out. The theory is
in an embryonic stage; indeed, not even the correct general definition of this
class of solutions has been found. This is evident from the lack of information
about deformation equations for systems with coefficients rational on a Riemann
surface of henus greater than 1. Another point of interest is the connection of
our work with that of Fokas [18) who obtains one class of multiphase similarity

solutions contained in our formalism by considering Lie-Backlund symmetries.

A paper in preparation will address some of these questions, primarily for the
MKdV family and for the Ising system of Section 5, but the general theory remains
open.

APPENDIX:

Here we quote previous results [7] which are used throughout this paper. The
most general equation with x- dependent coefficients which can be solved using
the Nth order system

Vx  (R 0 + P(x,t))V, (A-i)

Ro = i($ 6jk),P (Pjk ), Pi - 0, V an N-vector, Is

• • =.i l l I-I I"
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DR, C) is, at di+oa matri an th bat denotes R the ccnuatr Te oeAtor

In rA-2), G, and F are entire functions of an integro- differential operator

DR' which is the linear limit is a/ x and which operates on off-diagonal matrices
H F(hem)' hW O' is defined as follows. First, introduce the matrix H F)R

h ,the solution of CRO,(HF)RI H . The diagonal counterpart of H F is

define- to be Hn F ar eniredy. Second, define the operator acting on Hto

x
be

DH = HF + [H ~ CH dy PI

LH + CHP H =HF + H. kA-3)

The subscripts F and D denote the off-diagonal and diagonal parts of the desig-
nated matrices respectively. Finally, D RH D(H )R The corresponding x and t
dependence of V(x,t,C) is given by D F

G(C,t)V t F(C,t)V - xR 0F(C,t) + Q+S-T)V. (A-4i)

If the potential P(x) decays at x-is', we can define fundamental matrix solutions

jkxp)) Y~tpCe sRwith the asymptotic behavior (a xo ne k )respectively.

Then, the scattering matrix, A(C,t) 0Y satisfies the equation

G(H,t)At '+ F(Ct)A H W+A-AW (A-5)

watere W Lt (Q+S-T). The quantities Q and T are defined as follows. Let

Q = (m) m m-
O(a t))~m wher W (in) = then Q W ander

de R ) 0M Rn0eInf0Vt h 
Q0 C nen 

b

QDSFIORC, P) 5=1,...m

G(",tV+, =(oF,)+ S-) (A-6)

Define the sequences (Tklk CSIt { In a similar way:

W =(R Pt RPTkD =o ix kFJP1 kdy V Tk+kD, 1 .

G(=(x t,,tA+ F,A dy9 W+AA D £~ (A-5)

- x-+x

S ( 'R(V)- 'C ° ]~)R SID. CS - FF o dym Ser -m =I +o SrID'r A Io 
(

;
A -

IF " R h, 0 d'f 'x +
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Then, if G(DR,t) - k(t)DRk, F(DR,t) E f (t)

T gk,(t)T (k), S =Z f 't)S( ,

(k)=k k-r It A -. '

T T C , S SrC r -8)
1 1

The flows (2.3) can be written in the form P, OCJRCP]. Clearly Pt ti= Ptit

and using this in £2.3) we find " [p'Q] Q=Q " +Q(i), .J]. Therefore
=GZoG

"1 
whrJ ,G ~e s h

-where G=PG, i.e. G is the fundamental matrix solution to (2.1) at
C=0, Thus if Q is zero for any x, as it is if q -o o at either w, then Q is zero
for all x. However the result holds more generally. Q is a function of C and

the equation 2q= x CPQ] holds For each C. But this is a system of homogeneous

linear o.d.e.'s of order N
2 and thus has only N2 degrees of freedom. Thus Q is

identically zero and the flows commute.

The example used in Section 2,3,4, and 6 are derived from (A-2) as follows. Oe-

fine Y
1 

=f. 01, Y= [0 11, Y,= [3 0], and take Ro=C=-iY
1
, P=q

-2 01 iq . 2

P=q 4 2 +Y 3). Then QI-q(Y2+Y 3 ), Q2=-"2x ,Y2 -Y 3 ) 2 y1 P

Q3 . "-/41(qxx - 2q3 ) (Y2 +Y3 ) Q=-i/8(qxx -2q3 ) (Y

-1/l4(qqxx -1/2q 2 -3/2q 4 )Y1, Q5 = [i/:6(qx - 2q )xxx

-1/l(q
2qx- 1/2qq x 2-3/2q

5 )x! (y2 +Y,). Recall Q(n)n
Z Qr Cn-r, ([ = -iYl" S1 =xq(Y2 +Y3 ), S2 = i/2(xq)x(Y2 -Y 3)

+ iA(x)Y., A x - (xq)xq, A(-)=0, S3 = (-1/l4(xq)xx-Aq) (Y2 +Y3)
adS n) n n-r. PtD.

and s(n) r  . Equation (2.3), is found by setting 0= OR; Q(1=x

Implies q t q: equation (2.3)3 is obtained by taking n- 4 t3; P= 34=43x

implies that q +qq equation (2.3)5 is obtained by taking 0-1605Imples hatqt 3  qx x5R

Pt 16DQ5 16Qx implies that qt =(q xxx'lOq2qxx . Oqqx 2 +6q5 ) x: equation

(2.3)_1 is obtained by taking n=DR"-1 One can show oR-'1CC,P] -2sinhu (Y2 +Y )

LA
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where q=-u/ 2 and u(-*) -0. Hence q =2 sinh u or u =-4sinhu. Also the

constraint (3.2) is found by taking P and V independent of t (but not of t .. .t)

and F=OR, I= Jt OJ for odd J.

The equation (6.1) which describes the int raction of a soliton and a similarity
solution comes about by choosing F-= R3 +l ), = DR5 +1 2 DR3 + DDR . The corres-

ponding equation for V is

(c2 +12)V (-ixc(c 2+ 2)Y 1Q+S-.)V (A-9)

5) 2 (3) (1) (3) 2 (1)
where q='Q(5) +,.IQ(3 + (1) and S= S

( 3 )  
S() The equation (6.1) which is

the compatibility condition of (A-9) and (A-1) is, when once integrated,

Q5 1 2Q3 +eQ1 +S3 +1
2S1 = K. (A-l)

The scalar , is chosen to normalize the solution V(C,x). If we were to choose
)=0, then, if q=2ij sech 21(x-xo), the two linearly independent solutions of
(A-9) near C=+ij have the form (C; i1 ) "-/ 2 Fl(C) and (; iq 2 F2 (C) where F

and F2 (C) are analytic at C=+ij. Even though the indicial roots differ by an

1. 1integer, these are no logarithm terms. It is convenient to make ,- +

S+) as this makes the indicial roots -i and 0 which means that V(C)

has only a pole singularity at C=± (I. Choosing the opposite sign for A would
give the indicial roots 0,1. A singularity which can be removed by normalizing
the solution V(C) is called apparent.
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Shelves and the Korteweg-de Vries equation

By C. J. KNICKERBOCKER AND ALAN C. NEWELL
Department of Mathematics and Computer Science, Clarkon College,

Potsdam, NY 13676

(Received 14 November 1978 and in revised form 1 October 1979)

An extension of the analytical results of Kaup & Newell (1978) concerning the effect of
a perturbation on a solitary wave of the Korteweg-de Vries equation is given and

numerical studies are conducted to verify the conclusions. In all cases, the numerical
results agree with the results predicted by the theory. The most striking feature of the

perturbed flow is the presence of a shelf in the lee of the solitary wave whose role is to
absorb (provide) the extra mass which is created (depleted) by the perturbation.

1. Introduction and discussion

The problem of the propagation of a shallow-water solitary wave in a canal of
slowly varying depth has been the subject of several papers in the recent literature.
Although, the changing depth causes reflexions (Peregrine 1967; Miles 1979); to a good
approximation the unidirectional propagation is well described by the perturbed
Korteweg-de Vries equation (PKdV) (Johnson 1973a; Kakutani 1971),

qt+6qq,+q = -r(t)q, 0 < r . (1.1)

In the context of water waves, the local depth is hD(e#X/h) + ekN(e*X/h, eioh-iT)

with X and T the dimensional space and time co-ordinates respectively; the co-
ordinate x is the local retarded time

is a measure of the distance along the channel from the point where the depth be-
gins to change. The right-going component of the disturbed elevation N is given by
iDsq(x, t) and r(t) is 9Dt/4D which is assumed small; namely D changes slowly

with respect to the length scale of the disturbance.
It is natural to exploit the smallness of (t) and to write as a first approximation the

solution to (1.1) in terms of the solution of the unperturbed problem allowing those
quantities which are constants of the latter to vary slowly in time. Ott & Sudan (1970),
assuming that the basic solution has the form of a soliton

q(z,t) - 2ij'ech'(z-Y), g t,4,1 (1.2)

and using the conservation law (energy)

f '2rmf q'dx, (1.3)

00*2-112@/80/44fl-1790 M02.00 0 1980 Cambridge Univresity Press
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found that 1(t) satisfies vt - - (1.4)

which we shall see is a correct result. They did not explain, however, the fact that
neither of the expressions for conservation of mass (here we speak of conservation of
mass in the sense of the KdV equation; in the water wave context some of the actual
mas is reflected),

f* _qdx= -rIt) fqdx, (1.5)

nor of first moment
a r=

fJxqdx = 3f qdx- r(t)f xqdx, (1.6)

are satisfied to leading order. Each of the relations (1.3), (1.5), (1.6) may be integrated
exactly (Leibovich & Randall 1971),

f3(t) = qdx = M(to)exp (-f: d), (1.7a)

E(t) =f q2 dx = E(to)exp  -2 f7(s)ds) (1.7b)

and

G(t) = xq dx -[G(to) + 3E(t.)f Id8 exp r(r) dr) exp (f ',~ d)
f,,/ to f: (-I (8) dY).

(1.7c)
Several authors (Grimshaw 1970, 1971; Johnson 1973b; Leibovich & Randall 1973)

have examined the propagation of a solitary wave over an uneven bottom topography
in some detail. Johnson (1973b) and Leibovich & Randall (1973) work with (1.1)
directly and attempt to find an asymptotic representation of the solution in the form

q(x, t) = qo(, t) + oq,(x,)+.., (1.8)
where o, 0 < e 4 17 < 1, is a measure of the amplitude of [(t) and qo(x, t), the leading
approximation, is given by (1.2). By demanding that the asymptotic series (1.8)
remains a uniformly valid description of the solution q(x, t) over long time (a-'), they
found that 2(t) obeys (1.4). However, they were unable to find a solution ql(x, t) which
tends to zero both as z-* oo and x-- -o. In fact, they found that, as X - -no,
q-o r/37o', which renders (1.8) non-uniform and seems to indicate that the mass

f qdx

is infinite. Clearly there is something non-uniform about the expansion (1.8), a point
to which we will return. Nevertheless, as we shall see, the results are almost correct and
indeed a shelf does form behind the solitary wave. However, it has a finite range, a fact
observed numerically by Leibovich & Randall (1973) but not explained theoretically.

The dilemma of infinite mass and the role of the shelf was first explained by Kaup &
Newell (1978) (hereinafter referred to as KN) who used a totally different method
(also used by Karpman & Maslov (1977); we should also mention that some of these
results were obtained by Ko & Kuehl (1978) by a direct method after they were
familiar with the results of Kaup & Newell). They exploited the fact that the unper-
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turbed equation ( 1.) is exactly integrable. By exactly integrable, we mean the follow-
ing. The KdV equation is an infinite-dimensional Hamiltonian system (Gardner 197 1;
Zakharov & Faddeev 1971; Flaschka & Newell 1975) which may be written

H 8H I

and 4/8q is the variational derivative. The inverse scattering transform (Gardner et al.
1967, 1974), is a canonical transformation (preserves the form of Hamilton's equa-
tions) which carries the old co-ordinates q(x, t), - oo < x < 0, to new ones which are
defined by the scattering data S,

S = = iqkfl ,, R(C), Creal} (1.lOa)

of the eigenvalue problem

Vr.+(C2+q(x,9))O 0, -00< <00. (1.10)b

In S, the quantities ik are the bound-state eigenvalues, the yk are the normalization
constants for the corresponding eigenfunctions and R(C) is the reflexion coefficient. If
q(x, t) evolves according to the KdV equation (or any member of the KdV family), then
the functions -2,1f. and (-2C/ir)ln(1-IRj2) are action variables and therefore
constants of the motion; their angle counterparts, which change linearly in time, are
proportional to In ,k and argR(C) respectively, and the Hamiltonian k" in the new
co-ordinates is an additive function of the action variables. Each 71, gives rise to a
soliton which when physically separated from the other solution components has the
form 21l sech'2 It(x - Yk) with 2kt = 4411, where Yk - 2 i7/k exp (27 kk]. Thus the action
variable , prescribes the constant amplitude, shape and speed of the soliton; the
angle variable y or T defines its position. The function R(C), the reflexion coefficient,
measures the degree to which the continuous spectrum is excited. For a pure soliton
state or reflexionless potential q(x, t), R(C) a 0. In general, however, q(x, t) is expressed
as a series in terms of the squared eigenfunctions of (1.10b), wherein contributions
from both the continuous and discrete spectra are included,

q(z,t) - - 0 gB(C) S(xt,C)dC-4 E Yk k t(X, (1.11)
-- co 1

The solution component corresponding to the continuous spectrum gives ris to that
portion of the solution which is oscillatory and dispersive in nature. We can therefore
think of the KdV equation as being separated into its various normal modes (16r, fr)

by the inverse scattering transform.
The effect of a perturbation is to render (1.1) no longer exactly separable. Instead

the normal modes can become mixed; an initial state consisting only of solitons can
stimulate radiation and in certain caes vice versa. If the perturbation term is small,
then it is natural to treat the system by writing down the equations for the rates of
change of the action variables and allowing the leading-order approximations of the
latter to vary slowly so as to suppress any non-uniformities appearing in the pertur-
bation expansions for these quantities. This is the method used by KN to analyse the
effects of various typical perturbations on the canonical equations of inverse scattering
theory and is a natural generalization of classical perturbation methods for finite-
dimensional Hamiltonian systems.

.r .I -i a-. t If I I , l,--- " l J ~---.-.- - - I--
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The principal new result of the KN approach is the resolution of the infinite mass
dilemma. What happens is that the continuous spectrum is excited by a resonance due
to the interaction between the soliton and the perturbation. The quantity rz()
develops a Dirac delta-function behaviour at C - 0. The corresponding structure in
physical space is a shelf of almost constant height which stretches between the
position (x - 0) of the soliton when the perturbation was just switched on and the
solitaxy wave's present position. In the original co-ordinate frame, the shelf stretches
from the soliton to the position to which an inflniteeimal disturbance would have
travelled from the point where the topography first changed. As the solitary wave
moves, new shelf (if r > 0, it is a shelf of depression, if r < 0 of elevation) is con-
tinuously formed and the extra mas depleted or created is exactly the amount needed
to satisfy ( .7a) and (1.7 c). Although it was not originally noted by KN, the amplitude
of the shelf continues to evolve after its initial formation due to the influence of the
perturbation, a point observed by the present authors (Newell 1978) and independently

by Miles (1979). The transition between the shelf and the q - 0 state at z - 0 is
achieved through a series of decaying oscillations (the integral of an Airy function).

Before we give the analytical and numerical results in the next two sections, we
make the following remarks. The first concerns the connexion between the KN
approach and the straightforward method of perturbing (1.1) directly to obtain

qat + 6qo qQ. + q,, - 0, (1.12a)

q,, + 6q, q, + 6q, q+q - - (/a)/r(t) q0 , (1.12b)

and s on. The question now arise a to how to solve ( 1.12 b). Ifqo(x, 9) is a solitary wave
with phase 0 = z - f 412 dt and if one asks, as Johnson and Leibovich & Randall did,
for solutions q,(z, t) which depend on the fast scale z and i only through the combina-
tion 8 and a slow scale oz or as, then (1. 12 b) is an ordinary differentia I equation whose
solution has the property that q, -. F/3riao as z and 0 -) - oo. In other words, if one
simplifies (L.12b) by making the anatz q - q(O, o-orof), one looks at the problem
from the frame of reference of the solitary wave, from which vantage point the shelf
looks infinite, and one therefore loam information about the initial onset of the per-
turbation. Thus the ansatz q - q(0, ax or at) fails because, although the shelf amplitude
is slowly varying, its range is not. It also fails at the point where q, must make the
r~verse transition from - I/3/ to zero. Near that point, and indeed away from the

..* ary wave, q0 is asymptotically zero and q, satisfies q,, + q,.. - 0, which together
with the local boundary conditions q1(x - - o,i) - 0, q(x-- + o, t) - -r/371o" is
satisfied by the integral of an Airy function, in fact, exactly (2.5). However as we
shall see in if 2 and 3, for long times, account must be taken of the further evolution
of the shelf after its initial creation; this will mean in fact that the second boundary

condition on ql(z,t) will be qlz-m,t) - -(r/s)3i(o)exp H- r(s)de . One can

calculate the position at which the reverse transition must occur by using the exact
mass-balae equation (.7 a).

There is no doubt, then, that a direct perturbation can be successful, provided one
understands a priori the nature of the solution. The important thing to check is
whether the slow change of the soliton parameter (or parameters) can simultaneously
satisfy all the connervation relations; in general, it will not. When it does not, the
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solution will no longer be adiabatic; i.e. a slowly varying solitary wave. Nevertheless,
as we have seen, using a judicious combination of the perturbation equations and the
conservation laws one can obtain the solution by direct methods. Indeed this is the only
approach available if the problem is not exactly integrable in the first approximation.
However, when it is, we emphasize that all these results appear quite naturally when
one takes advantage of the exact integrability of the leading-order equation and
inverse scattering theory.

Furthermore, if q0(z, t) is not simply a soliton but a more complicated solution of
(1. 12a), then it is extremely difficult to find, by direct means, the appropriate basis for
which the left-hand side of (L. 12b), which is then a partial differential equation,
separates. The answer is provided by inverse-scattering theory (Newell 1980), which
tells us that the correct basis for expanding ql(x, t) is

E o ;r C, real; (00 a20

which is adjoint to the set F = {#(x, C), C real; (orl, Oo./OC),}, where O(x, C) (r(x, C)) is
the solution of (Cl0 b) which behaves as e-icz (e'cz ) as x- -- o ( + ). Indeed multi-
plying (1.12 b) by 0,2(x, C, t), integrating over (- oo, oo) in z, using the expression

Vf - (qQ.- MCI) * + (4 2- 2qo) Or,

for the time dependence of f, gives us exactly the expressions we would have obtained
by the KN approach. Thus in order to separate the perturbed system, we are led back
to the same expressions for the perturbed action-angle variables as we would have
obtained using the K.N method.

Our second remark emphasizes the point that in the KN method no a priori ansatz is
made concerning the solution structure. All we do is give the initial values of the action
and angle variables (e.g. the amplitude and position of the soliton before the pertur-
bation is switched on). Then, no matter how q(, t) evolves, the scattering data S,
see (1.10 a), is always uniquely defined, the eigenfunctions i(x, t, ) always computable
in principle and q(, t) may be written down through (I. 11). We stress that the struc-
ture of the kth soliton is given by q - - 4-/ vf 0. The initial shape is

q - 2,Isech'1,&( - k)

but one is not guaranteed that the soliton shape is always given by the hyperbolic
secant. In the present case, the long-time behaviour of the solitary wave structure can
be written as 27 sech' i(z - ik) except that now k is a modification of 4, the original
angle variable.

* Finally we mention that the height of the reflected shelf has been calculated by
Miles (1970).

2. Analytical results
For 9 < 0, a soliton (1.2) with q - il, travels unperturbed. At t - 0, the soliton

arrives at x - 0 and the perturbation is switched on. Our goal is to monitor the subse-
quent evolution of q(, 1) to leading order. It is stressed that even though the shelf has
amplitude of order r, ever long time it makes an order one contribution to both the

I _ _ _.. .. ... . .
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mas and first moment balance. By examining the change in the scattering data, KIN
found to leading order that

(2.1a)

2t = 412 + 0(r), (2.1 b)

where I is a measure of the position of the solitary wave (e.g. the position of its
maximum).

As already mentioned, the interaction of the soliton with the perturbation give rise
to a resonance which leads to a non-decaying component of the solution connected
with the continuous spectrum. Indeed for order one times, KN. found that this con-
tribution (calculated by using (1.11)) is given by

P . C...1® sin2 (-)sn z

q(xt) = _L tanh(x -i) [in (x - ) - si 2 +40) d(2g) (2.2)-" f- f o1' 2C, (2 3

.- r- tanht l(t- ) Tr sgn (x- !) - 7 OW Ai(s) d 23

where sgn (x) = I for x )1 0, sgn (z) = -1 for x < 0. For x > 1 > 0, the term in the
brackets is zero. For 0 <x I < (and for those x where tanh2 1(x-) = 1),

q.(xt) - r exp (2.4)

forz < 0,
r- / 2(-z (2.5)

Thus between x = 0 and x - 1, the position of the solitary wave, a shelf of height
- [/31 is created. At both z = 0 and x = 1 the transitions to the respective solitary
wave and zero states are smooth. KN pointed out how this shelf accounts for the rate of
the extra mass created (r < 0; depth-decreasing case) per unit distance, mass which is
not absorbed by the amplifying soliton:

f" qdx- f q8 dx +F'I'qdx_4 - ,.11

I. - n"4,) - j r(47) =-r(4,4),

the exact result. However as pointed out by the authors (Newell 1978; this point has
also been noted by Miles 1979) the calculation of shelf height for times 1/r is only
valid immediately behind the solitary wave. The subsequent evolution of the shelf is
most easily calculated from (1.1) directly; the nonlinear and dispersion terms are

negligible. Then at I when the solitary wave is at !(I) = 12 dt, the height of the shelf

q,(x, 1) at the point x is .--r / ft(z)
q(x, ), 3 1r)exp r(a) do 0< X <2, (2.6)

= 0 otherwise,

where t = f~x) through the integration ofx, = 41. Our numerical results presented in
53 agree almost precisely with this formula.

I.
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Let us now aee how these approximations a&low us to balance the exact relations
(1.7 a) and (1.7 c) almost precisely. To leading order, the mass in the shelf is given by

MIR() - J0 9,(x, 1) d. (2.7 a)

By using (2.6) and the transformation z - fo 4712di on (2.7), we find

31()- -
4 o exp ( -f'r(8)4s) {f 3'd 52 ex r~s do

4% 47exp ( 8 j lada) - 4%70exp (....f r(e) do) (2.76b)

But the last term is simply M,(l) - f 70q8(x, 1) dx, the mass in the solitary wave, and

thus to) leading order

.M(l) -Mf)+ M() -4% exp (s ) d8) (2.8)

the exact result. A similar calculation can be carried out for G(t). When r' is constant

it can be done explicitly. We find, again to leading order, that

G(1) - -1im /r exp (- rE (exp (- ro)- 11, (2.9)

which is the exact result (1. 7 c).
Finally we mention the consequences of these results in the context of shallow water

waves. Integration of (2. 1) gives

,9,0- (D0/D)i, (2.10)
whence the soliton amplitude in

jeh~i.jD/3D. (2.11)

Thus the solitary wave amplitude is inversely proportional to the depth. On the other
hand the shelf height (here it is convenient to express the height as a function of 1,
which in the water wave case measures position, and I the present position of the solitary
wave) is je&Ds(f) q(9~), 1), which, using (2.6) witb r - + 9De/(4D), is

eD*(My) 1 (2.12)

which is inversely proportional to the fourth root of the depth estimated at the present
solitary wave position. D' refers to the derivative of the depth with respect to the
argument efX/h.
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3. Numerical results
In order to verify the theoretical predictions, we numerically simulated the differ-

ential equation (1. 1). For a number of reasons we chose an explicit finite-difference
scheme suggested by Vliegenthart (1971). This scheme discretizes the components of
(1.1) by

qt=q(j,,-a + 1) - qOj, n- 1) + O((Wp),
-2W

q(j + 1, n) + q(j, n) + q(j- 1, n) +0(( )'),
3

q M q(j+ ,n) -q(j- I,n) + 0 ((AP),
2Ax

q(j+2,n)- 2q(j+ 1,n)+ 2q(j- ,n)-q(j-2n) +
= 2(A.x) 3

where t - nAt and x - j x.
We define r(t) -f¢(t)/f(l) and we will present the results of two numerical cases.

Case (i) consists of defining f(t) - et so that r(t) - - o- constant. For this case the
computations used o, - -; and considered times 0 < t < 100. For case (ii) we took
f(t) = at- t1, yielding r(t) - -a/(o - 1). In these computations we choseo o= and
looked at times 0 < t < 40. The choice of case (ii) is of interest because of its potential
applicability as a model to the problem of an internal solitary wave travelling on a
thermocline in the neighbourhood of the point where the coefficient of the nonlinear
terms vanishes (approximately where the depths of the upper and lower layers are
equal).

The time at which the perturbation procedure breaks down is when r/3 17, the
shelf height, is of the same order as the amplitude 21?. For case (i) this occurs when t is
O(n Io/a), which for c- - - IJ is approximately 100 time units. We monitored times
up to 100 time units for case (i) and did not observe any divergence between the
numerical and perturbation results. For case (ii), the breakdown occurs when time is
o-'-O(-), which for a- -A is approximately 33 time units. After this time we
noticed that the perturbation solution began to diverge from the numerical solution.

Figure 1 gives an overall picture of the total motion of the system. The major
features of the solution are: (a) a slightly distorted solitary wave, (b) the formation of
the shelf, its finite range and its subsequent evolution and (c) the decaying oscillatory
tail. Figure 1 shows the numerical solution for all x at five different times 9.

In order to check on the accuracy of the numerical results, we continuously moni-
tored the values of the total mass, energy and the centre of gravity and compared the
numerical results with the exact relations (1.7). First, with '(t) - -f¢(t)/f(t) the mass
is given by the relation f qdx - 4-1ff. (3.2)

Second, the energy is given by f qdx - V P, (3.3)

and, third, the centre of gravity is defined by

fLqdx I 61 flft dt} (3.4)

v-ydj; 41711A
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1-0

0=5

r- 10

t=20i

St-30

-10 0 10 20 30 40 s0 60 70

Dismce x
FIouRZ 1. Numerical solution at five time levels I - 0, 5, 10, 20, 30. The curves shown graph the

distance z (- 10 < x < 70) versus the scaled amplitude (q(r, t)/"*2)1.

Case (i) Cae (ii)
Mass 0.0003% 0.48%
Energy 1.9% 2-28%
Centre of gravity 0-7% 1.07%

TAsxJu 1. The maximum error obtained in comparing the numerical results to the exact results,
over the intervals (i) 0 < t < 100 and (i) 0 < t < 32.

As the table I indicates, we obtained very close agreement with the exact results,
which is to be anticipated since the Vliegenthart scheme is designed to conserve both
mas and energy in the unperturbed equation.

Having established the accuracy of the numerical results, we now compare them
with the results of the perturbation theory.

In analysing the solitary wave portion of the perturbation solution, two features
were checked numerically, the amplitude and the position. The amplitude evolution
as derived from the perturbation theory is given by

2T" - 2I IfIl. (3.5)

Figure 2 gives a graphical representation of the comparison of the numerical results
and (3.5) for case (i). The comparison shown in figure 2 yields a maximum error of 3 %.

The second feature of the solitary wave examined is its position, which, to leading
order, is given by

z(i) "Jo 41l di + o(r)

- 414ffI d+ o(r). (3.6)

__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 3

..... ,, __________ *C*- ,
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2"0

S1-0

0 S tO 15 20 25 30 35 40 45 so
Time t

Fiotuiz 2. Numerical solution (-o-) versus perturbation theory (-) for the amplitude
variation of the solitary wave. The results graph the amplitude (0 < q(x, t) < 2) versus time
(0 < t < 50) for came (i).

The comparison between the integration of (3.6) and the numerical results for case (i)
is given in figure 3.

Before we proceed there are two points to be made concerning the results shown in
figure 3. First, from the numerical experiment, one observes that the solitary wave
slows down and stops. Remarkably the integration of (3.6),

z(o) - (+ 3,1/r) (I -exp (-trt)),

follows the entire experimental trajectory of the solitary wave maximum to within
2 %, which is of order r. We say remarkably, for one might expect the approximate
solution to be valid only for times when £ 4 r - 1 in r-1 when - r/31, the shelf height,
is much less than 2,17, the soliton amplitude. Second, we note in figure 3 that the
difference between theory and numerical experiment for the trajectory of the centre
of gravity 9 - (4los/r) (1 -exp ( - ri)) is less than 0.7 %. In view of the fact that the

approximate theory follows both f qdz andf zqdz so closely (cf. (2.8) and (2.9)),

it is not surprising that y(t) can be followed so closely.
The comparison between the integration of (3.6) and the numerical results for case

(ii) is given in figure 4. The maximum error for case (ii) was 2.3 %.

The second major feature of the general solution which we checked was the shelf
and again the numerical and perturbation results were extremely close.
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Fiouaa 3. Numerical solution (-0-- versus perturbation theory (-) for the soliton position.
Numerical solution (A) versus perturbeaion theory (--)for the centre of gravity. The reaults
graph distance (0 < z < M8) versus time (0 <29 < 140) for cawe (i).
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Fxomm 4. Nuxneriosl solution (--0-) versus perturbation theory (-) for soliton position.
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0
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-6
x

-8

-10

-12 -.

-14
0 10 20 30 40 50 60 70

Distance x
Frau-z 5. Numerical solution (-o-) versus perturbation theory (- ) for shelf amplitude. The
curves relate distance (0 < r < 70) and amplitude (-14x 10-' < q < 0) for case (i) at t = 2775
time units. The dashed line ( ---- ) represents the maximum amplitude of the shelf for each
point r. This maximum occurs at t =' 9(x) the creation time of the shelf at the point r. The rear
portion of the solitary wave may be seen at the right of the figure.

From (2.6) with P(t) = -ft(t)/f(t), we find

q(x, q,(x, tc(x)) f(), (3.7)
fPtJX))

where I measures the current time and t,(x) represents the time at which the shelf was
created at each point z. By writing the creation time as a function of x through the
integration of (3.6) we arrived at the following results. For case (i), (3.7) yields

q.(x, 1) - 3,1(1 +ox/3i4)' (3.8)

where ?o - 1(t = 0).
Similarly for case (ii), it is easy to verify that

(X, 1) W 0-(01- 1 )(3.9)31,, (1 - 7 o-x/ 1 F,1-,2]q ' V30

In figure 5 we look at an enlarged version of the solution for case (i) at I - 27 time
units, and we focus our attention on the shelf portion of that solution. The dashed line
just below the shelf represents the maximum amplitude of the shelf at each point x.
This maximum, which is - l'(t)/3?1(tc), occurs at the time of its creation. The numerical
results agree almost precisely with the perturbation results given by (3.8) and (3.9),
and the comparison is equally good at all other times.

In order to study further the formation and evolution of the shelf, we focused our
attention on several positions and monitored the evolution of the shelf at those points.
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FIGuRZ 6. 1Numerical solution (-0-- versus perturbation theory -)for shelf amplitude.

The results which are quoted at r - 0 (initial soliton position), x* - 36, and r = 72. graph shelf
amplitude (- 15-0 x 10-3 < q(x, f) 4 0) versus time (0 < I < 100) for case (i). The rear portion
of the solitary wave appears at the left of the figure.
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Fxounz 7. Numerical solution (-.0-) versus perturbation theory (-) for shelf amplitude.
The results which are quoted at x = 0 (initial soliton position) and x - 16 graph shelf ampli-
tude (- 12.0 x 10-2 < q(x, 9) < 2 x 10-3) versus time (0 < I < 40) for case (ii). The rear portion
of the solitary wave appears at the left of the figure.
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5.0

-5-0

, I I I
-40 -30 -20 -10 0

Disunce x
PO~uR 8. Numerical solution (-o--) versus perturbation theory (-) for oscillatory tail. The
results graph tail amplitude (-5.0x 10- 4 < q(x, t) < 5.0x 10- 4) twom distance (-40 < z < 0)
for cam (i) at I - 7 time umite.

Figures 6 and 7 show in detail the evolution of the shelf after its initial formation and
the perturbation and numerical results agree almost precisely. Although the slight
differences between theory and experiment fall within the range of the numerical error,
there is some suggestion of long waves propagating along the shelf from the solitary
wave.

The results shown in figure 7 which are for case (ii) are qualitatively the same as
case (i).

We also checked case (i) with o = + , the amplified case corresponding to an
upward-facing shelf. After checking (3.8) against the numerical results we again found
close agreement. Note that while the shelf amplitude decreases with z (- r/37 (*,)
decreaes with z), nevertheless at each point the shelf eventually grows with time (see
(2.6), (3.8), with o - +,). We remind the reader that the result (3.8) for the shelf is
obtained by the balance qt - oq. Both qqe and q.,. are of smaller order. However, as the
shelf grows, the nonlinear term again becomes important and indeed the shelf will
begin to break and form order-one spatial derivatives on the time scale a- ' In o- . At
this stage the dispersion becomes important; the shelf breaks into a solitary wave
train, each pulse of which is weakly amplified by the oq term.

The last major portion of the solution considered was the oscillatory tail. This tail
can be viewed in figure 1 for various time levels. In figure 8 we show a more detailed
comparison of the perturbation results (2.3) and the numerical results for came (i) at
I - 7 time units. The amplitude F/3-1 in (2.3) has been adj usted to the value

mwp0/sy))exp (L"r(a) do)
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in line with (2.6) and (3.7); that is
qtuX )WEewt + 1;( Ai(a da]. (3.10)

The phase of the theoretical solution is not known exactly (the discrepancy is of the
order of the width of the solitary wave) due to the lack of precise information as to
where the shelf is formed with respect to the solitary wave. Therefore within this
latitude we have chosen the phase of the theoretical solution (2.3) so that it agrees with
the numerical solution at the point where the oscillatory tail attaches to the shelf. We
believe that the slight remaining discrepancy between the theory and numerical
experiment is due to the presence of very low-amplitude long waves which are con-
tinuously created at the solitary wave. As already noted some evidence for these waves
is seen in figures 5-7. Indeed, a very careful examination of the time dependence in the
oscillatory tail seems to indicate the presence of these long waves. However our present
numerical scheme is not sufficiently accurate to study this very small effect in further
detail.

The authors are grateful to NSF (MCS75-07548 A01) and ONR (N00014-76-C-0867)
for support.
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INTERNAL SOLITARY WAVES NEAR A TURNING POINT
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We report an unexpected result and illustrate the mechanism by which a solitary wave propagating on a thermocline
reverses its polarity as it passes through a turning point near the shoreline.

1. Introduction. Long solitary waves in lakes and •
estuaries, propagating on the thermocline separating
two shallow layers of fluid of almost equal densities,
are approximately described by the Korteweg-de NJ
Vries equation. The effect of the change in depth of
the bottom layer, which the wave feels as it approach-
es the shore, results in the coefficient of the non-
linear term being a slowly varying function of position
which has a zero at the point (the turning point) where
the depths of the top and bottom layers are approx-
imately equal. Since a solitary wave represents a
balance between quadratic nonlinearity and linear y •
dispersion, in the present context the sign of the non.
linear term determines that the wave must always
face into the deeper layer. It has therefore been argued
[I] that the solitary wave ceases to exist at the turn-
ing point and disintegrates into a train of dispersive Fig. 1. Physical system being considered, where N(x. t) is the
nonlinear waves there. Although this does indeed oc- dimensional elevation of the thermocline and the densities
cur, it is far from the whole story. What happens in of the upper and lower fluids are o and ol, respectively.
addition is that the solitary wave, which initially
faces into the bottom layer, develops in its wake a
long shelf of the opposite polarity as it approaches V(X, 9) = D(X)V(x, )/{ [H2(X)/h2 - 11 (eh2 )},
the turning point. After the turning point, the original of the thermocline separating two shallow layers of

A downward facing solitary wave disintegrates, but the fluid (the effects of surface waves are neglected) of
upward facing shelf forms a new upward facing solita- slightly different densities P, P2 ( (p < P2) is
ry wave which propagates through to the shoreline.

Vx +A(X)VV 9 e +B(X)V,* + C(X)V =o, (2.1)

2. The model. Consider the situation as shown in where X = e31x/h2 measures position,
fig. 1. Following the ideas of refs. [1,21, we fimd the
equation which describes the nondimensional eleva- -e-f D-1I2 (r) dr - (ge/h 2 t)/2
tion,

is the negative of the retarded time,

326
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( 1 - 1/p2)[ - H2(X)/h 2 ] analyses [2,3,6,81 which discuss a perturbation theory
D(X) = 1 +P0 [h2 - H2(X)/ 2h 1  for eq. (2.4). However, it was only recently [4,51 that

the role of the shelf in creating or destroying mass
was appreciated. The global structure of the shelf,

x and t are the dimensional space and time coordinates which is needed to show that J.udO is indeed a
and 0 < e - 1 is the ratio of wave amplitude to depth. constant (in r) of the motion, was first given in ref.
The coefficients A(X), B(X) and C(X) are defined by 17]. Here we follow the prescription given in refs.
A(X) 3(1 - p112/p 212)/2D1 2 (1 - p1 /p 2)i 2 , [6,7] and shw ow h, by ajudicious use of the con.

servation laws of eq. (2.4), we can obtain all the
B(X) a 1112(12 + P111/P2)/6D312(11 + p112/P2 ), leading order behavior for distances i-and retarded

times 8 of order I/a.
C(X) -Dx/4D + 12X/212, We begin at the point" = 0 when the perturbation

is switched on with the pure soliton state,where! 2I =h1 /h2 and 12 = 1 - Hz(X)/h 2 are con-

sidered to be slowly varying functions of X (i.e. q(,r, 0) = 2772 sech 2 7(0 - 0), W, = 4172, 7 = 170*
/-H2X= 03(o)), so that the change in the bottom First we calculate the slow change in the parameter
slope occurs over many solitary wave widths; how- XT) induced by the perturbation. By using the con-
ever, the terms reflecting changes in A, B and C are servation of energy
more important than the next terms (higher order non- 2f 
linearity and dispersion) which would appear in eq. a c 2d9 d(21 (~.e2Ifq2dO f 2'd0,
(2.1) (i.e. <2  e4). Note that the coefficient A(X) ar I 'qJ f qs

of the nonlinear term changes sign where P212 = -
p1

12 , which when P2 - PI = 0.06p1 occurs when 11 we obtain y(r) = ?of
2"/ 3(r). Second, from the conserva-

andl12 are approximately equal. tion of center of gravity
Using the transformation W(r, 0) -A(X)V(X, 0)/ 2

B(X), where r- f XB(r)drwe obtain f qd-3fq dO + f qdO,

W1. + WWe + W + (C+- BT/B - A1 /A)W = 0. (2.2) we find that to leading order, the solitary wave velocity

Once H2(X) begins to change, the terms A-'A,, 0 is 417 2(r) [the true velocity, in the physical coor-
B-IB. and C are all important; however, as the turn. dinates x, t is

ing point (r = I/) is approached, the term A- IA is=
dominant. This allows us to simplify our model further xt = - -

by neglecting C(r), changes .in B(r) and writing A(r) = 2(gDh2)I1 2B2(X)KD 3/2(X)N(x, t)
aK(r- 1 I/0, where '(gDh 2 )112  + 4.H (X ~

oK = -3p112r(7)/12(P 2 - PO)D2(r)8Q),

evaluated at r a I/o. Setting u(r, 0) = KW(r, )/4"(r), which can be integrated to give W as a function of r:
we obtain what we shall call the TIdV (transitional 0(r) 12r02 2l - [-f(r)J 7/3}/7o.
Korteweg-de Vries) equation,

S(. Next, we calculate the shape of the secondary struc-
ur +f( A)uu Us9, 0, (2.3) ture. Because the solitary wave parameter has been al-
where f(") = -1 + ur. We exploit the fact that f(r) ready modulated to satisfy the conservation of energy
changes slowly with r by setting u(r, 0) - 6q(r, 8)/ requirement (the only consistent choice), the local
f(r), whence eq. (2.3) becomes mass conservation relation cannot be satisfied. Only

q,+ + (ff)q. (2.4) two-thirds of the extra mas created (depleted) per
unit distance by the perturbation can be absorbed
Qost) by the solitary wave. Therefore a shelf q0 (r, 0)

3. Perturbation theory. There have been many is created between - 0 and 0 0, the present posi-
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tion of the solitary wave. Its height upon creation can universally and results from other important examples
be found by balancing the expression for the local are listed in the appendix.
conservation of mass,

T f ""4. Numerical results. Here we focus on fig. 2 which
.f qS dO + afqc d ' f qd. gives the results of a numerical integration of eq. (2.3)

-- 0 -- from r = 0, with a = 1/20 and initial conditions
Using , = 4i72 (r) yields us(O, 0) - -12t 2 sech 2

0 9.

q(f, ) =Lf/3rK7)f()1 1 ,' We used a modification of the Vliegenthart scheme

which may be written as a function of 9 using the [9) and checked accuracy by continuously monitor-
M~ation f() = of - I = -(I - 7o0/1212)3/1, the last ing conservation of mass (fudO = -24,70) and energy
expression obtained by integrating r = -4112. Since fu2dO - 192t?3). In fig. 2, we drew, at each fixed
the shelf amplitude is small and since it varies slowly position r, the negative (and retarded; the phase de-
with respect to 0, its subsequent evolution is given pends on location) time history 8 of the pulse. For
by balancing q,, and fq/f. Thus, when the solitary locations between r = 0 and 15 (r = 16 is the approx-
wave is at f, at retarded time 9, the height of the imate breakdown position), the results of perturba-
shelf at 9 is tion theory and numerical experiment were compared

and are in close agraement. After the breakdown of
qc(9 , i) qc(0. J)ffl f(f) the perturbation theory and before the turning point

a(oi - l)/31O(1 - 7a/I 12 12)8fl, 0< < . 15< <20, we observe that the solitary wave con-
0 tinues to gain (negative) mass. However it has also

It is important to stress that while the shelf amplitude noticeably slowed down and, just before r a 20, has
is order o, its mass content is order one. Therefore the begun to travel backwards which, in physical coor-
shelf plays a crucial role in the leading order descrip- dinates, means that it is now traveling with a velocity

tion of the system. For example, from our results less than that of the longest linear dispersive wave.
we note that solitary wave for TKdV is given by The result of the slowing down is that the compensat-

u,(O, r) - 1212 l-f()I - 1/3 ing gain of (positive) mass of the shelf takes place
over smaller intervals and a peak begins to appear at

sech2 { the front of the shelf. At the turning point r = 20,
h (t0 -f()] 2 3 (O - ,the peak is quite pronounced. As the turning point is

its mass content is -241 (- 113 ; the shelf u (9 , r) passed, the peak and the remaining shelf breaks up
is 2o/.10(1 - o0/12ni2)8/ , 0 < 0 < 8, and zero else- into a train of pulses. These pulses, if they are to be
where and its mass content is 241 0(-f)

- l/ 3 - 24110. solitary waves, must still pass through the valley
Note the conservation of total mass f _u dO to lead. created by tte remains of the original solitary wave.
ing order depends crucially on the existence of the The criterion (determined numerically; one can also
shelf. We also observe that while the solitary wave make a plausible analytical argument using inverse
decreases in amplitude, its mass content and conse- scattering theory) that a solitary wave forms is that
quently that of the shelf increases without bound as for some r, the amplitude of the leading pulse is at
the turning point is approached. Indeed, the perturba- least twice that of the valley. At r = 30, we can see
ion theory breaks down at a point where the ampli- that, in this case, the leading pulse satisfies this cri-
tudes of the solitary wave and the shelf are of the terion and is beginning to separate from the others
same order, when r = (I/a)(I - O(oi/3)J. Neverthe. which form part of a dispersive wave train. At r = 40,
less, as we see from the numerical results which at which point we take f(7) = 1, the new upward facing
follow, the perturbation theory gives us qualitatively solitary wave is about to emerge from the effects of
accurate results beyond the breakdown point; the the disintegrating original solitary wave. We continued
solitary wave (and consequently the shelf) continues the numerical calculation tiff r - 200 in order to de-
to gain negative (positive) mass. We remark tha., the termine that the emerging solitary wave has indeed the
perturbation procedure shown here can be used quite character of a Kortewe-de Vries soliton, 12k 2

X sech'k(O - 00 - 4k r).
328
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Ffg. 3. This graph shows -)the relationship between v; ( no) of the initial soliton and kt of the terminal soliton fot various
ues of a (a a1/40, 1/20, 1/3, 1/2 reading from left to right). The line (- - -) represents the relation kt , 2vio/3. The tines

(-...) appearing at the lower portion of the graph are due to the inability of the numerical scheme to give precise information
for small kt.
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Fig. 3 is a graph of k versus */0 for various a. Note Example 3: r = 2, F aq; 17 71o exp(2or), Y, f */2

that as long as 710 is large enough, the amplitude of and
the first upward facing pulse will be sufficient to 2(l + 40X1772),

create a solitary wave. For larger values of 710, we note 0 0

the remarkable result, for which we have no analytical
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Bifurcation and Nonlinear Focusing

A.C. NewelI
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Abstract:

We suggest that the phenomenon of nonlinear focusing can play an

important role in the transition of a system from one wavelike state to

another.

1. Introduction

Nature provides an abundance of physical situations which are not simply

conservative and, in addition to the balance of forces which give rise to wave

notions. involve nonconservative effects such as diffusion and external influences

which provide a reservoir of potential energy. The balance between the external

forces and dissipation or restoring forces is usually characterized in the form

of a parameter (or parameters), such as the Reynolds. Rayleigh or Taylor numbers

in fluid meohanics, the north-south temperature gradient in meteorology, the

loading parameter in elastic shell theory, the inversion number in lasers, the

temperature in superconductors, the time step in a finite difference algorithm

used to solve a partial differential equation. At certain critical values of

these parameters, a fundamental and nonanalytic change in the nature of the

solution occurs (it will be necessary to qualify this statement in what follows);

for example, the change can be-from a stationary state to a steady or wavelike,

regular or irregular motion. When the resulting motion is ordered, like in a

fluid heated from below (one-dimensional convection cells), or in a laser

This work is supported by NSF grant #MCS75-07548 AOl and ONR grant

ON00014-76-C-0867. The lecture was given during the International Symposium

on Synerietics, Schloss Elmau, April 30 - Kay 5, 1979.
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(synchronized light emission) or a superconductor (boson like behavior of super-

conducting electrons - the Cooper pairs), then we call the new state a

cooperative phenomenon [1]. On the ocher hand, it is often th, Ae (e.g.

instability of the Blasius flow, certain plasm instabilities) that while at

the onset of instability the flow appears regular, it quickly degenerates and

exhibits local turbulent bursts. It is the purpose of thie article to suggest

a possible explanation for the concentrated patches of irregular behavior.

Before we do chis, it will be useful to review some background material

on transition. Our first goal will be to identify those circumstances under

which a system in which many normal modes are potentially present exhibits a

behavior in which one particular configuration or pattern dominates all others.

This happens in open system , far from equilibrium, because one configuration

can draw on the reservoir of potential energy more efficiently than others and,

,ving grown to a finite amplitude state, can then inhibit the others from

further growth. Present evidence seem to indicate that systems with degeneracy

(or symtry) have trouble deciding which of the many configurations, each of

dnich can dray on the source of potential energy at exactly the sam rate,

ire dominant. Therefore. we expec; that in situations such an gravitational

convection between two horizontal planes in which rolls of a fixed wavelength

-jut arbitrary alignment can grow initially at the sam rate, the dominant

-onfiguration, if at all realized, must arise because of the effects of side-

walls or some external forcing which gives preference to some particular roll

alignmnt.

Conversely, one expects that in system in which one mode is slightly

preferred over the others, then this pattern will eventually dominate the flow

and an ordered state will result. In many cases, this is indeed what happens.

Hlowever, an we point out in sections 4 and 5, there is another mechanism which

can work against the realization of the ordered state. This mechanism is

dynamic in character and is a property of the wavelike behavior of the excited

state. Briefly stated, in certain circumstances, nonlinear dispersive wave-

traina do not wish to remain monochromatic with one characteristic vavevector

k . Instead, they often break up and focus into pulses. Sometimes the
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process stops after the pulses achieve a certain amplitude. In other cases, the

pulses continue to focus until the local finite amplitude effects cause the

system to become widely irregular in local patches.

2. Nondegenerate Transition

Consider a mechanical system in which the so-called critical parameter

(henceforth calle the Reynolds number) K is near its lowest critical value Rc"

At this value, linear stability analysis suggests that one of the normal modes

of the systam is about to make a transition from a damped (and perhaps oscillatory)

or purely oscillating state to one which grows exponentially. Provided that the

system is nondegenerate, that is, only one mode is about to destabilize, we can

describe the behavior of the system near R R R by an equation for the amplitudec

A of the mode in transition,

SA - I + xA 4 A
2 
- BA' - F(X,A) • (2.1)

In (2.1) 6 stands for d/dt if the transition, is from a damped to excited

state, and if the transition is from a neutral (oscillatory) to excited

dt I
state. The parameter X measures R- c and for our discussion we will assume

it to be real; a'and 8, both taken positive, measure the nonlinear reaction

of the system. In the context of elastic shells, the quadratic term results

from the influence of a nonlinear elastic foundation; the cubic term usually

arises from a self-modal interaction. The parameter I we call the geometric

imperfection after Kaoiter (21, who introduced the term to account for the

imperfectiona which may be present in the shell before loading. As we point

out later in our narrative, this constant term can result from many factors.

It plays two very important roles.

Consider Figures I and 2. Figure 1 is the curve P(X-R-Rc,A) 0 with

a - 0 and represents what is called a suparcritical bifurcation. If I - 0,

there is only one root A 0 for X " R-Rc 
< 
0 and three A 0,'A + rxI

for X 0. The curves CD and CE represent stable solutions of (2.1); CF is
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A FiSure 1. Supercritical Bifurcation

unstable. The transition at the bifurcation point is non-analytic; x < 0,

A - 0; X > 0, A - + /XrS If I > 0, then the curve F(x,A) is the dotted

curve OGD (stable) and ERF (Eli stable, HF unstable). Note that now the

ransition in smooth and analytic. This is the first important role of the"

%*ometric imperfection. In [3], Benjamin describes how its presence (due to

the effect of cylinders of finite length) affects the onset of Taylor vortices

.n the supercritical bifurcation of a flow between rotating cylinders. The

Taylor vortices can be seen as ghostly apparitions at subcrittcal values of R,

the Taylor number; however, they are amplified rather rapidly, albeit

smoothly, when R is close to Rc

Figure 2 shows the curve of a 0i O. Thin kind of bifurcation is called

traacritical. Again, if I - 0, the "parabola" ECD in Figure 1 is simply

displaced so that its vertex C is at X - -C 2/48, A - t/28. The portion of

the curve RC is unstable; CD and R E are stable; R F is unstable. The
c c

stability properties of the various branches can be simply understood. Let

A be an equilibrium solution of (2.1). Then if A - A + 
p
. dp/dt - (aF/BA)oP

t: first order. But, A+ f - - 0  and since f- we have,

to 3A dX a

-A(-) P. • Hence, for A > 0 (< 0), the branch is unstable (stable) ifdt 0 dX a 0

A decreases with X, stable (unstable) if A increases with X. In the situation

depicted in Figure 2, one can have a subcritical bifurcation; that is, for

values of X < 0, there is a poesibility that if perturbations are large enough,
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A Figure 2. Transcritical Bifurcation

¢D

0 '34 - F R

E

the system can transfer from the stable solution ORc to the stable solution CD.

The phenomenon ok hysteresis is also present. In the case of transcritical

bifurcation, the geometric imperfection I plays a second important role. When

I > 0, the curve F(X,A) - 0 changes as shown by the dotted line in Figure 2.

The curve has-two separate branches OGCD (OG stable, GC unstable, CD stable)

and EST (ER stable, HF unstable). Moreover, we also note that if I is

sufficiently large, the curve OGCD describes a single valued relation between

the amplitude A and the Reynolds number R. However, the important point is

that the imperfection prcvides a means for the system to reach the neighbor-

hood of the unstable saddle points CC without the benefit o; large disturbances.

If X or R is increased beyond the value corresponding to G, the system will

be attracted to the only possible stable configuration on CD. It should be

noted, however, that in the shell buckling problem there is no branch CD and

therefore once G is reached, the shell begins a total collapse which is only

halted when the shell assumes a completely new configurat.ion (large buckles

vith sharp corners to absorb the energy). The role of the geometric imperfec-

tion in lowering the critical buckling load from R to G was one of the manyc

fundamental contributions of Kolter [2) to our understanding of bifurcation

phenomena.

In this lecture, I will suggest another means by which a system can realize

locally the unstable branch GC without benefit of large perturbations. The

mechanism is dynamic and relies on the fact that the transition is almst
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degenerate in the sense that whereas one normal mode has the fastest

growth, there is a continuum of others which destablize at only slightly

higher values of Rc

3. Degenerate Transitions

Degenerate transi.tions most often occur in infinite dimensional systems

with symtry. The problem of gravitational convection in a fluid contained

between two horizontal planes in an adverse temperature gradient is a typical

example. In this situation, a linear stability analysis of the purely conductive

solution fixes the wavelength XC . 21/l'cI but not the direction kc of the

normal modes in which convective motion can first take place. For the problem

of an axially loaded cylindrical shell, the symmetry allows any mode with a

davevector lying on the locus k 
2 

+ k 
2 

- + k ( - (k.,k ), x is the axial,x y - x y

the circumferential coordinate) to appear. Moreover, the linear analysis

permits any linea.r combination of these norp.al modes to occur; we call this

the planform. For example, if the motion has only one k vector, then the

motion is a roll whose axis lies 1n the direction perpendicular to k. If

the motion has three wavevectors I 1 , k2' k3' each of which sjtisfies 2W/Iki - c

and each separated by 120, then the planform is hexagonal. In the buckling of

-* 2w 2w 2wa cylindrical shell, the planforat - r (-1,0), W (kx'ky)' ' (l-kx'-kY) has

a diamond shape.

The question naturally arises: which of the various configurations are

realized in a real experiment? In the neighborhood of R - PC each normal mode,

if left on its own, would grow to a stage until the finite amplitude (nonlinear)

effects sufficiently modify the excess adverse temperature gradient so as the

motion settles down to a steady (or in other examples a liat cycle) state.

This situation is essentially, described by (2.1) with I - c -0. Howevsr,

the modes, once they have reached a finite amplitude state, do not behave

independently; rather they compete and out of this competition, a dominant

planforn my (or indeed may not) emerge. One way to gain some insight into
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vhat might be the preferred mode is to consider the stability of the various

steady solutions (each realized without interference from the others) when

perturbed by all other allowable configurations. This approach was pioneered

by SchiUter, Lortz and Busse [4) and extended by Busse (the Buse "balloon";

see [51) and mch-of the work is either summarized or referenced in a recent

review by Busse (6]. For example, using this approach, one can infer that if

the Oberbeck-Boussinesq equations are modified slightly so as to include the

viscosity dependence on temperature or quadratic effects in the density

temperature relation, the hexagonal planform is preferred. The reason for

this is worth elaborating (which we do below) because the resulting planform

is due to the presence of quadratic terms (a 0 0 in (2.1)) in the amplitude

relations and it is useful to understand how such terms naturally arise. In

one sense they are atypical although catastrophy theory experts like to state

that the transcritical bifurcation is generic (that is, more typical than the

supercritical one). I will leave this semantic point to the reader to decide.

Let us now review the reasons for the existence of various term in the

amplitude equation (2.1) and discuss in what sense the quadratic terms are

typical. (2.1) is derived by a perturbation analysis of the underlying equa-

tions written schematically as

L( ,R)u ,4-,-( 3 ,R)[u',u,...] (3.1)

In (3.1), L is a linear operator acting on the scalar field u(xj,t) which

describes the difference between the actual state of the system V(xi.t) and

some known background state V (x *t) whose stability is about to be lost as

the Reynolds number is increased. The RRS represents all the nonlinear terms

which become important when the solution u(xj,t) reaches finite amplitude.

One begins the analysis by investigating the linear stability problem.

Simply ignore the RlHS of (3.1) and seek solutions of

L (x , ,)u 0 (3.2)
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in the form

U(xj,-') ( a J - w + i. (3.3)

In (3.3) T, J = 1,...M, corresponds to chose spatial coordinates whose domain

is infinite (or at least large compared with Ac ) and which are associated with

a continuous spectrum ks, and x', j - M+l.... N corresponds to those

coordinates which are finite in extent and lead to a quantized and discrete

spectrum. In the case of gravitational convection in a fluid layer between

cwo horizontal plates, N - 3, M - 2, il. i2 correspond to x, y the horizontal

coordinates - < x,y < - and z to the vertical coordinate 0 < z < 1.

Substitution of (3.3) into (3.27) with the appropriate choice of elgenfuncrions

#(kj ,x) leads to the equation

L(-iw+, ik. R) - 0 (3.4)

(recall soma of the k are discrete) which is going to be central in our

future discussion. In general, (3.4) is a complex relation and allows us to

solve for the dispersion w and growth rate v as functions of k and R.

w - w(kR) , (3.5)

v - v(k i R) (3.6)

MoW the solution (3.3) is linearly unstable In the region of the (kS,R) plane

where v(ki R) > 0 and stable when v(k,R) < 0. This defines a neutral surface

v(k it) - 0 (3.7)

or solving for t assuing av/R 0 0

R 1(k) (3.8)

NeI t, let us choose k such that R is minimal. One usually can choose among

the discrete modes to achieve this end by inspection. At this point we fix

251

L _ _ _ _ ____

t~ ." -.



the values of k' corresponding to discrete modes at the values which lead to

minimum t and call the corresponding lowest eigenfunction 0o . Henceforth

we onit the tilde on the continuous spectrum. From (3.7),

A 3R a (3.9)

and we choose kjC (the kc), such. that

av 3R (.0
k - 3k 0 (3.10)

As we have already pointed out, in those situations with built-in symetries,

these equations may lead to a surface

K(k .... kM) - 0 , (3.11)

rather than a unique wavevector kJc

One now proceeds to look at the nonlinear problem in the neighborhood

of ]tc that is, R - RC(+2X), by seeking a solution for (3.1) in the form

u(xit) - E(u ° + CuI + 2u2 + . (3.12)

where i(r' r) ,
u " Ar(t)e o(x.) + (*) (3.13)

r

In (3.13). the subscript r refers to a particular wavevector kr

(k1t, k2r .... kM.) and not to the component. The coordinate x - (x 1 .. )

x' - (xN 1 .... xN)% Each r "es on the surface (3.11) and wr - W(Cr 'c )

from (3.5). We know L(-ibia c) - 0. To find u1 , we will solve a linear

inhomogeneous equation; the inhomogeneity will arise froe the terms Nu
2 
on

the RHS of (3.1). Each of these term will have the form

-( +; INw4W )t
22 02 (3.14)
0

where N is some operator in the xj (e.g. so "
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In order for u, to have a solution, certain solvability conditions (the

Fredholu alternative theorem) must be satisfied. Crudely speaking, in the case

of self-adjont operators L and self-adjont boundary conditions, the term

(3.14) is secular if it is an eigsenfunction for the operator L(C , R )

corresponding to the sigenvalue Rc . In order for this to happen, we must have

2that (a) the cer NO 0, when projected into the basis of which *, is the first

member, must have a non-zero component of 0 ; (b). I + k2 ust belong to the

critical surface (3.11); w, + w2 - w(il
) + 

w(k2
) 
must be the natural frequency

for the wavevector k +k2 that is + w(k1+k2 ). Only when these conditions are1hs 2odt 1.o 2t

satisfied is there a quadratic term in the amplitude equation.

In order to gain some feeling for when they might be satisfied, consider

the simplesttproblem of convection. Here, the onset of instability is steady

and w(i) - 0. Hence, (c) is automatically satisfied. Since for this case the

surface Kis a circle * constant, (b) is satisfied for three vectors Id

k2 ' k 3 at angle 120". If there is no vertical asymetry in the problem, the

first geignfunction *o will be Sinz which is symmetric about z - 1/2 and
12

its square will have a zero projection into itself (f Sin 7rzSinz - 0).
0

However, any slight vertical asymetry will lead to an eigenfunction 00 which

is not symmetric about z 1/2 and this will result in a term like *A* in the

time evolution of Al (1 0). Because of phase differences, such terms

Slmest always (for a counterexample, see [7)) lead to the possibility of the

onset of convection at subcritical values of R; the relevant bifurcation in

these cases is transcritical.

The quadratic terms are also responsible for the existence of a sub-

critical branch in the (A,R) curves (Figure 2) in the case of shell

buckling (see, for example, (8,91).

Whereas quadratic term can sometimes appear in (2.1), cubic terms always

do. They will result from erms on the RHS of (3.1) of the form Nuou1 which

are typically of the form

t Free boundaries at a - 0,1.
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+±e J+tPe" 3±
"o -k -wt , (3.15)

over all (I,=). But if Om  9 and N43 has a non-zero projection into
1 3 t•

(cf. f siln zSinlzdz 0 0), then the term A A2Al, which is called a
0 -

modal interaction, will appear in the equation for the growth of A .

The equation for the growth of the amplitude of a typical wavevector k

can nov be written down:

C -- (R-R)A 1 - A 1 1 it (3.16)1d 1 2 3 "A2- A1  Blit

where C1 . Cl23 and 8it are constants. The solution of (3.16) and the

companion equatior.s for the other A do not have the property that a unique

configuration oeerges asymptotically in time which is independent of the

initial conditions. There is an extremum principle due to Suse* (101 but

the principle describes a local property and does not exclude the possibility

that both hexagons and rolls are stable solutions. Indeed, for certain ranges

of R-Rc , that is the case.

It turns out, then, that the final state depends not only an the relative

stability properties of the various configurations, but is also sensitive to

initial conditions and most important to sidewall effects. Indeed, if the

aspect ratio is less than 30. sidevall effects seem to dounate in that they

help choose the particular roll alignments. For example, in the experiments

of Kosechueder (111 done in a cylindrical dish, the rolls are circular;

in Krisbnamurti's (121 experiments, the rolls align themselves with- the side-

walls of tLe rectangular layer.

For large aspect ratios, what happens in that the various configurations

form locally in a fairly random fashion, according to whatever particular roll

aligement was favored at the time at a particular location. Then configurations

diffuse outwards (and some useful description of this process may be possible

by an equation (4.31 derived below) until they interact with disturbances for

other configurations. Since there is no real way for the various configurations
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to decide which is dominant, the resulting flow will tend to exhibit irregular

behavior. This fact is dramatically emphasized in the experiments of Ahlers

and Behringer 113] who find that if the aspect ratio is 57, the fluid flow is

turbulent in the sense that it has a nonperiodic time dependence for all R > Rc.C

It must be emphasized that their results are not a contradiction to the

experimental results of Busse and Whitehead ( 5 1 nor to the theoretical results

of Busse (14]. These authors do not allow spontaneous onset of any rolls but

rather by the use of carefully controlled experiments (the controls in their

experiments can be modelled by a geometric imperfection term in (3.16)), cause

certain roll alignments to be favored over others. Than because they are

locally stable, they remain dominant, at least until disturbances from distant

boundaries can affect them.

To summrize then: the ,xistence of too many allowable states causes the

system to appear disordered. There is order in the sense that the typical

wavelength of the flow is approximately X c but the roll orientation is distri-

buted over many directions. Therefore, one might expect that if a system is

to realize a natural ordered stgte, it must be almost one dimensional (that is,

dominated by a single wavevector k ). However, as we shall see in the

sections to come, there are other mechanisms lurking in the wings which can

frustrate such a realization.

Before we discuss those, let us emphasize that disorder or turbulence

can appear in systems of small dimension (specifically three) and does not

require an infinity of competing modes 115,16,17,181. For example, in those

situations where the first transition is to an ordered state (cf. in circular

Couette flow), typically what happens is as follows. As the Reynolds number

(Taylor number in the circular Couette flow) is raised, one sees another

bifurcation to periodic (in time) behavior (a 1 torus). When the Reynolds

number is increased further, a second frequency appears (flow on a 2-torus). At

a value of the Reynolds number at which these two frequencies fall into a

ratio al relationship, there in sma evidence of aperiodic flow, the spectrum

broadens and the flow appears chaotic. Thus, a complete disorder is possible

255

_____I_ .ImI



even though only three modes of the system are present. However, all this

occurs at values of the Reynolds number considerably beyond the value at which

the first bifurcation takes place (in the circular Couette problem, the Taylor

number is approximately 20 times the linear critical value) which is the

parameter range we are investigating in this paper.

4. The Generalized Newell-Whitehead Equation and Focusing

If the system is truly one-dimensional and nondegenerate in the sense

that the motion can be characterized by a single wavevector c' then the

system will evolve according to an equation like (2.1). If in addition

2 R-R
a - 0, thten for supercritical Reynolds numbers, the system saturates (A -

However, if the geometry aduits a continuum of wavevectors in the neighborhood

of k (such is the case if the aspect ratio in the convection problem-isc

infinite or if the cylinders in the circular Couette problem are infinitely

long), then for a given R > R a finite bandwidth of order R-R of wave-
c c

numbers can be excited. Even if the spectrum is discrete (due to the effects

of finite but distant boundaries), it is necessary to incorporate in the

1/2
description of the flow those modes whose wavevectors lie in a O((R-Rd)

neighborhood of k . One does this by allowing the amplitude A to be a slowly

varying function of both position and time. The envelope equation we will

dexive was first developed by Newell and Whitehead (19] and Segel (20] for the

case if transition from a zero to a steady state. If one allows only dependence

on the direction parallel to kc. the appropriate bandwidth is (R-R)/2 and

the equation has Ginzburg-Landau form. If wavevectors in the direction per-

pendicular to ic are included, the relevant bandwidth is O(R-Rc)l/
4  

For more

details, see the above references or the book by Joseph (21]. When the transi-

tios is to a state of growing oscillations (the "overstable" case), then the

envelope equation includes the effects of group velocity and dispersion and was

first given in [22).
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We seek solutions of the form (3.12) to the equation (3.1) with

u A(d.,t) - A(,,c,. .)e 
' w ( C Rc

)t)

2a *0x' + () (4.1)

where tc is the most critical wavevector with corresponding frequency

r w(kc ,R), x' are those coordinates of finite extent, X - e, T1 I

T2 ' E2t and, R c(1 + t2X). The affect of differentiating the product of

a slowly varying envelope A and a fast varying exponential phase by the

independent variables can be modelled by treating x, t, X, T1 and T2 as

independent variables and making the following transformations:

a a+C 3,a a + a"  
. With this formal structure,

Tt Wt* aT -£ ax ax~ ax

equation (3.1) is now written:

a~~ ~ a aP2 1 __

L(2 - + E 4(1.0 -L -L£ (L~ 4 L 2
8 1 0 2

T2 T2

+ L 2 RXIu+E 2
oj U j 3Tl *ji ax jax + LRR)( +u 1 + u2)

2 2 3

'Mu2 
+ 

2
(uoU 1 , uo ) (4.2)

where we have expanded L(a + e 2T - + E 2Rl+£ in a,r T - Rc X)) in

1 2 j 1

Taylor expansion. In (4.2), the sumstion convention is implied. To order

one, (4.2) is exactly satisfied by the choice (4.1). At order c, the only

secular term are ( CL + Li a u since unless w(2A) 2w(-k), a very

unlikely occurrence, Nu 0 only contributes second harmonic term to u1.

Removing the secular terms and using (A.8) we find

M + )(3w I_ 0  (4.3)

which shows that the envelope A(I, TV T 2) depends on a and t through the
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combinations - c(' - Vwt) and T - £2t. Henceforth, when we write X, we will

mean c( - Vwt). Vw is the group velocity of the most unstable wave.

At order E2, there will be secular terms produced by the RHS of (4.2)

in the form of a self modal interaction with coefficient -BLoA A
* , B - Br + io .

All the other secular terms come from the e2 terms in the expansion of L.

Using (4.3) and the relations (A.9) and (A.10) of Appendix 1, we obtain that

the solvability condition for u2 .is the envelope equation

aA a 2W 2A I a a 2 a2A

3T 2 3kt ax-ax1  2 5k ak a 3,
x3 xtt ) zk k zx

av - aw - .. 
2

- (j- i f)RXA (Br + iSB)A2 *  (4.)

The term -t 2 RcXA may be removed by taking the wc in (3.1) to we R)

rather than w( ,tRc), Al the coefficients in (4.4) are estimated at critical.

Also, the second partial derivatives of w keep R - tRc fixed 'in (3.5)' The

main difference between (4.4) and (2.1) with a - I - 0 is the presence ot the

1 32 W 2 A  ' v a 2R 2 A

dispersion term- L V1 and diffusion term - T R ia

The latter acts as a diffusion term; the matrix 3-3k is positive definite

by definition of 'k and helps the system to approach an ordered state in which

A is independent of 1. Notice that a sideband solution A - e i (in which

case the effective wavevector k - kc + ei) will grow at the rate

3- (RcX - a2  " j ) which is less than the growth rate of k itself.

If X, Br > 0 one might expect that A will tend aeymptotically in tiwe to. the

ordered state

A(Xf) sxPi(...T) X (4.5)

whence Uo( ,' ,t) consists of a monochromatic vavutrain with wavenumber Cc and

- 2 %the nonlinearly adjusted frequency w - w( c,R) + .t2±Xtr. However, there is

a destabilizing mechanism, first discovered by lenjamin and Feir 1231 in

216 -
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S1

connection with water waves, which involves only the dispersive terms of the

equation end the imaginary part of the coefficient B. In fact, it can readily

be shown that the solution (4.5) is only stable when the matrix

2w 3v 2
- (mjn) =Bi A + 3 r 3R 3k- k (4.6)

18 positive definite. This criterion reflects the battle between the

"cooperative" tendency of the system (namely, an initial power spectrum of

the spatial correlation function <u(')u(X 4
)> - u) narrows around

C - ;c end the system develops en ordered structure) and the "dispersive"

tendency in which nonlinear dispersive wavetrains prefer not to remain mono-

chromatic but rather to focus into pulses.

If the matrix M is not positive definite, then certain sidebands of c

will grow at its expense. The resulting broadening of the power spectrum

around k is associated with the formation of pulses in I space.c

In one dimension and in the absence of the real terms in (4.3), i.e.

a (4.4) is the nonlinear Schrodinger equation end the pulses form

solitpus. Also in one dimension, Lange and Newell [24) investigated the

satistical initial value problem for (4.3) end showed that if 8 " + Br a R 0i .r >o

the system does indeed realize the ordered state in which

( A> - A - /Xlr exp -i1(B 11 3 )X

r rrac~ ,tehge
and all the higher cumulants tend to zero. IR" < , the

cumulants diverge with time.

Novew r, if the dimension of the system is greater than one, then the work

of Zakharov and Synakh [25] suggests that a much mre dramatic phenomenon can

occur. In order to gain some understanding of what can happen, we again neglect

the term with real coefficients in (4.4) and obtain the highet dimensional

nlinear Schrodinger equation (261 of which the canonical form in two dimen-

sooes* -) - 21c2 * - 0. If a - b -c - 1, the solution

i(xy,t) collapses in a finite time in a self-similar manner for a sufficiently

large value of the motion constant "rl.I2dr, r -I- If a - -b - c - 1,
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the case of deep water gravity waves, then y independent solutions are

unstable essentially as a result of the weakly nonlinear quartet resonance

mechanism of the underlying carrier wave. In fact, by setting x = rcoshe,

y - rsinhe, x
2  

y 2, we see that the solution will collapse onto the resonance

curves x= .y2 (the portion of the Phillips [27] figure of eight curve near

the vertex). If a - b - -c - 1. then the system disperses and the long time

behavior is given by the two dimensional version of the Benney-Newell [26]

similarity solution $(x,y,t) "\ 1 B(r/t)exp(ir /it + 2i/t B2(-) +...).
t t

How are these results likely to apply to (4.3)? The first point we make

is that if M is non-positive, the system will not be cooperative in the usual

sense. The second and more important point is that if H is negative definite,

then the solution begins to collapse. If B > 0 then the collapse is eventuallyr

stopped but the system begins to oscillate and can create local collapsing

points elsewhere and the process is repeated. Furthermore, if Br is very

small (as it is in the case of Blasius flow), then the large local amplitudes

can give rise to secondary (e.g. inflexionai point) instabilities. If Sr < 0,

then even though X < 0, the subcritical case, tfe collapse can overcome the

initial damping of the system locally and reach amplttudes (corresponding to

the branch GC in Fig. 2) at which the nonlinear instability occurs. Focusing

then provides a mechanism whereby the amplitude of linearly stable but non-

linearly unstable waves can reach the critical amplitude without the benefit

of imperfections, end effects or large initial perturbations. One of the key

factors in the focusing mechanism is the strong, nonlinear interaction between

neighboring wavenumbers.

It is, of course, necessary that the sideband modes are not damped out

before the strong focusing can take place. One might conjecture, then, that

the focusing mechanism is a very important feature in systems where the

transition is from a neutral state to an excited one for then at subcritical

values of the critical parameter, all the sideband modes compete on an equal

footing. We discuss the focusing phenomenon in this context in the following

section.

In this case due to cubic term.
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5. Transition from Neutral States and FocusiRL

Although much of what we have to say in this section carries over to the

buckling of elastic shells, the model we choose is an explicit momentum con-

serving finite difference algorithm for solving the modified Korteweg do Vries

equation, ut + uXxx + 6u2ux - 0. Specifically, if m and n are the time and

space steps respectively, the algorithm is

u(m+l,n) - u(m-l,n) - a(u(m,n+2) - 2u(a,n+l) + 2u(m.n-1) - u(m,n-2))

- y(u 3(m,n+l) - u (mn-l)) (5.1)

where a 6 /t/(x)
3 

and y = - 2At/ax. A linear stability analysis of the

u - 0 solution of the form

u a exp(ipnh - i8mk) , 0 real , b = Or + 'ei (5.2)

shows that instability will set in at

1 (5.3)

4sinUhsin
2 

2

with rk - w/2 Sgnu. The minimum a is realized when vj c C h - 21r/3

and t . .385. We stress that for a < a , the modes (5.2) simply oscillate.
cc

A nonlinear analysis in which we take

C - a c (I + C 2X) (5.4)

u - C(uo + Cu 1 +... ) (5.5)

where

u° - A(m)exp(iucnh - imw/2) + (*) (5.6)

yields an amplitude equation

2AjA - 2XA + 6A2A *  
(5.7)

where - A(m+l) - 2A(m) + A(m-l) and 6 = -6'ein uch > 0. Note chat from

(6.7) we can infer that finite amplitude subtritical instabilities are possible.
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Namly, if X < 0 the solution A*M -2X/6 is unstable for the initial amplitude

of A (not / 2IxI/6 , because A is complex, but a little below it) which we call A.

If we perturb the system (5.1) with a mode with the critical structure

(u(o,n) = 2Bcosucnh) then from (5.7) we would expect the envelope A of (5.7)

to oscillate if B < A and grow rapidly if B > A.

When we tested the results suggested by (5.7) in a numerical experiment,

we found to our surprise that the nonlinear instability could be triggered for

values of B well below the iritical"threshold. What happens is that the solution

of (5.7) coupled with the underlying "carrier wave" structure exp(iucnh - imv/2)

is unstable to perturbations with different wavenumbers W. This instability

is analogous to the Benjamin-Feir instability (which was the mechanism for the

onset of focusing in the nonlinear Schrodinger equation discussed in the

previous section). In fact, in order to account for the finite bandwidth,

one may assume A - A(m,n) is a slowly varying function of time (m) and space

(n). This adds the term -2A
2A - -2(A(m,n+l) - 2A(m,n) + A(m,n-l)) to thex

left-hand side of (5.7) and one can show that the periodic in time solutions

of (5.7) are unstable to X (or n) dependent disturbances. The spread of

energy in wavenumber space is manifested as a focusing of the envelope A in

X (or n) space. Thus, whereas the initial A may be below the critical

threshold at every point in space, its subsequent evolution is such that it

decreases in most areas and focuses at a few points. It can continue to focus

(if the initial amplitude is much smaller than threshold, this can take a very

long time! See [28]) until locally the critical thteshold for nonlinear

destabilization is attained. At this point, the calculation explodes rapidly.

The details of this work are reported in the literature in reference [28).

6. Conclusions

We suggest that dynamic focusing may be an important factor in bifurcation

phenomena when the transition is from a wave-like (neutral or weakly damped)

state to a state of growing waves. In particular, it may cause local patches

of wildly irregular behavior in otherwise regular patterns. It provides a
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mechanism by which the unstable subcritical branch can be reached dynamically

without the aid of large initial disturbances or material imperfections. It

may be extremely relevant in elastic shall buckling. It may also be responsible

for a phenomnon familiar to some numerical analysts, namely, the sudden

appearance of local breakdown of a partial difference equation, which initially

was well within stability margins, after a very long time.

APPENDIX I

The Dispersion Relation

We begin with (3.4)

L(-iw(k ,R) + v(kiR). iki, R) - 0 (A.l)

which holds for all ki and R. Differentiate with resnect to'ki. the result

with respect to k9I and R to obtain:

Lo(-i + ) + iLi - 0 ,(A.2)

L - Lo(-i aL+~ - + I-)
0 ak~a 9 3k ak 9 A o 3k a ak

+ AL+ i )+ L df(-- + - 0 (A.3)

L (- + +L 0 (A.4)

where L is the derivative of L with respect to its first argument, L to*

its j th (that is with respect to /axIj), LR with respect to R. Loo, Loj and

L are the second partial derivatives which we assume coantinuous in the

neighborhood of t and Rc" Now, from (3.6) we'have

3V 2v -2- .0(A.5)
ak 3R 3k =0

and the critical wavevector is chosen so that
c
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;v 3R 0 j =l...M (A.6)
;k j ak

Take the derivative of (A.5) with respect to k1 and evaluate at c to obtain

a 2
u 3 a 2 (A.7)
ak.Y-. R Ak Ak

c c

From (A.2), (A.4), we have that at critical k
C

L - L (A.8)Lj

Lit. (iw-h) L°  (A.9)
R (3R 3R) 0

and (usumation convention implied) from (A.3) and (A.7)

aw a aO) a
ook k Ro o j

Il

-L (i a W 2- , (A.10)
0 kak1  aR ak i 1c
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The Mechanism by Which Many Partial Difference Equations
Destabilize

W. Briggs, A.C. Newell, and T. Sarie

Department of Mathematics and Computer Science, Clarkson College of Technology
Potsdam, NY 13676, USA

The motivation for this work was to attempt to understand the rea-
son that certain classes of explicit numerical algorithms for comput-
ing solutions to partial differential equations develop intense local
patches of instability aftqr long times, even when all the linear
stability criteria are satisfied. Now, numerical analysts are the
academic world's greatest plumbers, and so practitioners of the art
of numerical comoutation have invented many ingenious schemes to cir-
cumvent these problems (see, for example (1). However, beyond de-
claring that the instabilities are nonlinear in character and beyond
a few careful analyses of the problem (for example [2), [3)), the
numerical analyst has not investigated in any great detail the nature
of the breakdown.

Our thesis is that the phenomenon has a universal character and
has features in common with the instability of monochromatic surface
gravity waves on the sea, the development of Langmuir turbulence in
olasmas and the intense spots which occur when a laser pulse passes
through a nonlinear dielectric (4). We suggest it will occur in
those situations in which:

i) The algorithm has a linear instability at some value (At)c of
the time step At which has the character of a transition from a neu-
tral (not damped) state to an exponentially growing one.

(ii) The algorithm has a finite amplitude subcritical nonlinear
instability threshold which may be represented by a graph of "initial
amplitude" A versus At which begins at A-0, At=(At)c and rises (in a
more or less parabolic fashion) as At decreases. Here, A is the
amplitude of a potentially unstable mode. For values of A and At be-
low the critical curve, the algorithm should be neutrally stable.
Above the critical curve the nonlinear instability rapidly (within 10
time steps) sets in. The existence of the threshold is due to non-
linear terms which represent either a cubic self-interaction of the
mode with itself or a quadratic term which represents the interaction
of the mode with its subharmonic.

Whereas it would appear that the ultimate reason for the breakdown
of the algorithm is that the system has reached (at least locally)
the critical threshold, one must explain how it can do this since the
major source of perturbations is round-off error and these can be ex-
tremely well controlled. Therefore, large perturbations simply do
not occur spontaneously. The answer to this difficulty and indeed the
answer to the questions (a) why does it take so long? (b) why is it
local? is that the system possesses

(iii) the focusing property.
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We will explain this property with the aid of a simple example.
Let us imagine that we are attempting to use a leap-frog scheme in
order to compute the constant solution U of

ut + uux . 01 (1)

or the u - 0 solution for

ut + (U+u)ux  0. (2)

Nothing could be simpler! The algorithm is

u(m+l,n) - u(m-l,n) + Oy Cu2 (mn+l) - u2 (m~n-1)) (3)

+{(1-8)yu(m,n) + a)(u(m,n+l) - u(m,n-l)) = 0

At - At and G is chosen to have the value 2/3 in.where n =-- --, Y At -
Ax Axorder to conserve the discrete conservation oroperty

N
Z u(m,n)u~m~l,n) is independent of m 7 (4)
n-I

a Property necessary to suppress a fast-acting instability :3].

A straightforward linear stability analysis quickly reveals that
the mode

u(m,n) = ae i (n-m)+/2 (,

(*) is complex conjugate, is the most unstable mode. Indeed if we
set

u(m,n) = a(m)ei(n-m)'/2+ (*) + b(m)ei(n - m)" /2 (5)

in (3), we obtain exactly

a(m+l) - 2a(m) + a(m-l) - 2(a-l)a(m) + 2/3ya*(m)b(m), (6)

2 2 *2
b(m+l) - b(m-1) Syi(a (m) - a (nm)). (7)

Note that the linear stability result is contained in (6). For a<l,

the"/2 mode is neutrally stable; for a>l, it grows exponentially.
The subcritical nonlinear instability is due to the excitation of
its second harmonic b(m). I 2 b(m) is initially small, then for a<l
a(m) is sinusoidal, and a2-a 2 contains a constant term in addition
to the second harmonic. Thus b(m) initially grows linearly and if
the initial a(0), a(l) are sufficiently.large (as measured by some
parameter A), then the nonlinear term a b in (6) overcomes the linear
term.

Likewise, we may obtain an exact result if we take three modes,

u(m,n) - A(m)e/3n + B(m)ei + C(m)ei n + (*), (8)

whence A,B,C satisfy
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A(m+l) - A(m-i) + il (2A*B+B(C+C*))(m) + icu/TA(m) - 0, (9)

B(m+l) - B(m-1) + il (2A2+A* (C+C)) m) + ict/3Bm) - 0, (10)

C(m+l) - C(m-l) + 2i A(m)B(m) = 0. (11)

Again, using (9)-Cu), we can obtain a critical stability curve A
(representing the initial conditions A(O), A(M), B(O), 8(), C(0),
C(l)) vs. L.

If we take values A, below the critical stability curve, the
solutions A,B,C of (9), (10), (11 simply oscillate. Since (9)-(I1)
are exact, we should expect to get the same result if we insert these
initial values into M8) to obtain u(O,n), u(l,n) and then integrate
via (3). The experiment which is shown below in Figs. 1-5 shows
what happened when we took a - .9, N = 60, and A = .06. The dashed
line in Figs. 1,3,5 is the critical threshold. At m - 200, Fig. 1,
the solution still retains its period 6 structure, its amplitude well
below critical everywhere. Figure 2 shows the spectral revolution.
The first noticeable changes occur at about m - 1600, Fig. 3, when
it becomes clear that the envelope of the solution is not constant
but has begun to develop a structure of its own. The spectral reso-
lution, Fig. 4, shows that energy has leaked to the sidebands of T
and w. The envelope continues to focus and at m = 8004, Fig. 5, /3
one value of u(m,n) is about to cross the critical threshold. Very
soon thereafter, the solution exhibits rapid growth and the spectrum
becomes that of a Drac delta function. During all this time, the

area N1 lu(m,n) and the flunctional I Nlu(m,n)u(m+l,n) are conserved

exactl?. 0

So what has happened? It would appear that amplitude alone is not
the criterion for stability. If thq syste' lalthe property that the
monochromatic wavetrain (the pure (, 1) or T,,) mode solutions)

is unstable to sideband disturbances, and if this envelope instability
continues to grow, then the critical threshold can be reached local-
ly without the benefit of large initial perturbations. In our ex-
periment, the envelope instability was induced nurely by round-off
error. The initial conditions were the pure(P, n) mode to 8 deci-

mal places; double precision simply delayed but did not stop the
focusing. In short, the solutions of (9)-(11) are exact but unstable
solutions of the full equation (3).

In summary, then, we have found that if the numerical algorithm
has the properties (i) its potentially unstable modes are neutrally
stable according to linear theory (i'a subcritical nonlinear stabil-
ity threshold and (iii) the focusing property, then the algorithm will
ultimately exhibit unstable behavior no matter what the time step is.
Furthermore, we conjecture that the time t - mA-t on which the instabil-
ity occurs is relatively independent of At. We do not yet know what
constitutes a sufficient condition that the focusing is sufficiently
intense for u(m,n) to cross threshold for some m,n but we suspect it
is an "initial area" criterion. Finally, we emphasize that this mech-
anism has a universal nature and appears to occur in all the.e algo-
rithms which satisfy properties Ci), Cii), Ciii). Some of these ideas
were already discussed in (51 and their relevance to onset of turbu-
lence in other continuum mechanical contextq is suggested in 6] 2271



Fi. 1. u*(2 *. * *

Fig. 3 u(100,n)

Fig. 2 The spectral resolution of u(100,n)
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Fig. 5 u4004,n).
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INTRODUCTION AND GENERAL DISCUSSION

The stability of partial difference equations which arise in the dis-

cretization of time dependent differential equations is well understood for

linear problems with constant coefficients. Progress has also been made in

studying linear, variable coefficient problems. However, once nonlinear

terms are introduced into difference equations, there are few general state-

ments which can be made and global results are available only for isolated

cases ,4'9  Except for the pioneering work of Phillips9 and Arakawa and his

colleagues 1'6 , very little work has gone into analyzing the nature of instabil-

ities in the way that fluid mechanicists investigate instabilities as they

occur in the transition to turbulence. It is the goal-of this paper to make

such an investigation for a class of nonlinear finite difference equations

which are typified by the Leapfrog (second order) method applied to the

quasi-linear equation

ut + uux  0.

What we find is a totally new and very subtle mechanism for the triggering of

nonlinear instabilities. It is insidious and at first very slow to develop.

But then as a certain threshold is reached, sudden outbursts of unbounded

noise occur at various local positions in the spatial grid. The mechanism is

dynamic in character and does not necesparlly rely on large initial perturba-

tions or on a large flow of energy into the high wave numbers. It makes its

appearance in schemes which are energy conserving and neutrally stable over

short time scales. It is a mechanism which is universal in character and

closely related to the mechanisms responsible for the breakdown of monochromatic

gravity waves on the sea surface, Langmuir turbulence in plasmas and the intense

laser beams seen in nonlinear dielectrics1 0 . Our goal is to understand the

nature of this mechanism and to develop from this understanding plausible

criteria for the surgical application of various remedies which are necessary

. . .. • m i i 1 1 I I I '° --
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to suppress instability and sustain computations over long times. In particu-

lar, we will discuss, in the context of the example used in this paper, ways

in which one might judiciously choose the frequency at which one must apply

these remedies.

In order to develop a feeling for how this instability arises, we first

recount the ideas on which nonlinear stability theory is usually based. It

is natural to decompose the field u(m,n) (where t = mAt and x = nAx) into

components U(m,n) and u'(m,n), where U(m,n), the approximation to the exact

solution, changes slowly with respect to the grid length x and u'(m,n), the

noise, consists of.a small number N1 of low period (high wavenumber) modes

which are small integer multiples of the grid length. -This sort of decomposi-

tion is chosen because (i) it is known that the potentially most unstable

modes have wavelengths on the scale of the grid (often linear stability

analysis can suggest which modes to include) and (ii) it is desirable to reduce

the dimensionality of the problem from N, the number of grid points which is

generally large to N, which is much smaller. Use of this ansatz in the partial

difference equations leads to a set of N1 coupled, nonlinear, ordinary differ-

ence equations for the amplitudes of the N1 modes which constitute u'(m,n).

The background field U(m,n) appears as a coefficient which, because it is

slowly varying, can be taken to be locally constant. Because the original equa-

tion. is nonlinear, these N1 amplitude equations do not close automatically,

but are often derived through perturbation procedures as asymptotic approxima-

tions. In the case we shall examine, the amplitude equations do, in fact,

close exactly because of the aliasing phenomenon. The nonlinear terms in the

equations are quadratic and are due to both direct interactions of the form

exp(12,t1+7 )exp(i2,r 2+ .) .'exp(12ir(t 1 + L2

N
where Z1 + z2 <'I __ _ _ __ _
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and to "indirect" interactions which involve aliasing error 6 , 9 or (what

crystal physicists would call) Umklapp processes in which a wavenumber

L +  > N is misrepresented by the wavenumber L a N - Z I due to

the inability of the grid to resolve wavelengths smaller than 2Ax. It is

evident that the wavenumber sets N+ T N and {+ N N N are closed

under quadratic interactions (e.g. N + N it -N- ).

One can now solve the initial value problem for the ordinary difference

equations and determine stability curves such as those given in' Figure la.

Roughly speaking, the stability curve divides into two regions, the plane

coordinatized by E, a measure of the initial energy in the noise and a, a

non-dimensional stability parameter (e.g. T). In one -egion, solutions

grow without bound (overflowing ini 10-100 time steps), whereas in the other

region, solutions simply oscillate neutrally.

This curve provides all of the information usually associated with non-

linear stability theory. If the stability curve intersects the a axis (E - 0)

at a finite point, ac(O), then the scheme is unstable to infinitesimal disturb-

ances. We note that c(O) can be infinite, in which case, the scheme is

unconditionally stable in the linear sense. For a < ac (0), a finite E can

push the computation into the unstable region. We call this value of E(a)

the critical threshold at m., This is the instability discovered, in the num-

erical context, by Phillips. However, in a carefully designed numerical scheme

which inhibits the flow of energy from small to large wavenumbers, there is

neither the source of large spontaneous or driven perturbations nor a process

analogous to the role that imperfections play in destabilizing elastic shells,

through which the critical threshold can be reached. The size and growth rate

of roundoff error in numerical schemes is simply too small. Our aim is to

show that there is indeed a mechanism, dynamic in character, by which the

critical threshold can be attained locally without the benefit of large initial

,_ .... . . .. - - - - , --
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perturbations.

This instability mechanism evolves as follows. The solutions of the

ordinary difference equations which correspond to values of (c,E) in the

neutrally stable region of Figure la and which are exact solutions of the

original partial difference equations, are unstable. They are unstable to

modes which are their immediate neighbors in wavenumber space. The instability,

which results from the nonlinear interaction between the original modes and

their sidebands, manifests itself as a distortion of the envelope of the

noise. The exact solution will have a spatial period of the order of the grid

length (4ax - 6Ax in our examples) depending on which set of NI modes is used.

The envelope of the exact solution is constant in space and oscillates in

time. In our experiment, .the initial noise in the sideband modes triggering

the instability is due to roundoff error. In real calculations, there would

generally be some energy already in these modes. The instability mechanism

itself is a noise amplifier. Its character (initial growth rate and wavelength)

is independent of the size of the grid and the degree of precision used in

the calculations. Its.wavelength is chosen dynamically as being the one of

optimal growth. We understand the initial stages of this process. For the

later stages, we have developed an envelope equation which appears to describe

the subsequent growth reasonably well. The envelope begins to distort and

slowly develops sharp peaks (focuses) at isolated points along the grid. When

the local amplitude reaches the critical threshold given by Figure la, the

noise level accelerates drammatically and becomes unbounded within relatively

few time steps.

Thus the process by which the partial difference equation destabilizes is

a two-fold one. At first the noise level in the potentially unstable modes

(introduced in real computations by nonlinear cascade) is not large. The noise

-begins to focus and, if the spatial grid is large enough, can eventually reach

* . . " L i l I I I - , _ - .v -=it,'
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the critical threshold locally. Depending on the initial noise amplitude,

this focusing process can take a long time (often on the order of 10O3_ 10 time

steps) to develop. At this point, the conditions for nonlinear finite amipli-

tude instability are satisfied and the noise grows without bound. The critical

parameter in determining whether a partial difference equation is unstable

is a combination of both noise level and grid size. In this sense, for large

enough grids, the Leapfrog method is always unstable!

In summnary then, we have provided an explanation for spatially local

instabilities in locally neutrally stable schemes. To our knowledge, all

other theories of nonlinear instability are global in that breakdown occurs

uniformly throughout the spatial grid. One can, of course, inhibit the in-

stability by attacking its source of life, namely the energy in the small

scales. Indeed, such remedies as (I) filtering the high wavenumbers (ii) using

*a finite difference scheme that impedes the energy cascade to the point that

the stability curve is almost vertical so that no finite amplitude instability

is present (iii) averaging the solution at successive time intervals (iv)*in-

serting a forward time step at prescribed intervals will suppress or delay the

appearance of thtr instability. However these remedies may also have undesirable

side effects. Although we have no precise algorithm we will discuss ways in

which these 'techniques (particularly (iv)) might be applied in order to

suppress the instability and at the same" time minimize extraneous side-effects.

The contents of the paper are as follows. In Section 2, we present the

stability diagrams on which the discussion of nonlinear instability is usually

based. Along the way, we see, in the context of our example, the nonlinear

instabilities described by Phillips and Krelss and Oliger. In Section 3, we

illustrate the instability of the solutions used in Section 2 and display

through numerical experiments, the focusing property. We include careful ex-

periments showing that this behavior is not simply due to lack of computational
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precision, but rather is a genuine instability whose initial growth rate is

independent of the precision and the size of the grid. In Section 4, we intro-

duce an envelope equation as an attempt to give a universal equation which

would describe the focusing process for a larger class of schemes. In the

last section, we discuss some ideas about how to apply various remedies to

inhibit instability and we advance some conjectures concerning the parameters

on which the focusing property might depend.

II. DIFFERENCE SCHEME AND AMPLITUDE EQUATIONS

We will presently consider the stability of a particular finite difference

scheme applied to the nonlinear advection equation

ut + uux = 0

subject to periodic boundary conditions u(t,O) = u(t,l) and initial conditions

u(O,x) = f(x). The stability of the constant solution u = U (U> 0) will be

handled first. Perturbations, u', about the constant solution satisfy

ut + (u' + U)ux  0

We discretize the perturbation equation over a grid with time step k and space

step h = ff and let u(m,n) be the discrete approximation to the exact solution

ul(mk,nh). Using second order finite differences in x and t gives the set of

difference equations

u(m+l,n) - u(m-l,n) + C [u 2(mn+l) - u2(m,n-1)]

(2.1)

+ [(l-e)yu(m,n) + a] [u(mn+l) - u(m,n-1)] 0

for 0 < n < N-1

m > I

u(m,O) •u(m,N).
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wh~ere e c m k kU

The nonlinear term has been discretized in two different ways. It is not

difficult to show that with e = 2/3 the scheme satifies the conservation

properties that

N N
M = E u(m,n) and E = Z u(m+l,n)u(m,n) are independent of m. (2.2)

n=l n=l

In the calculations that follow, the choice e = 2/3 will be used. In addition

we assume y = l(k=h) to eliminate one degree of freedom in parameter space.

A brief look at the associated linear problem will be useful. The linear

difference equations

u(m+l,n) - u(m-l,n) + c[u(m,n+l) - u(m,n-l)] = 0

0 < n < N-I

have normal mode solutions of the form

Up(m,n) e for 0 < p < n-l, i =1,2.

The frequencies €I and 02 are real and given by

a sin 2p 1

provided that ct is less than the critical value

* - (sin

The frequency 0I is associated with the physical mode and converges to the

exact solution, while 02 belongs to a spurious or computational mode6.

Note that ctp> I and that if a <c, then mode p Is neutral. However, If
p -p

1 > a*, then mode p grows exponentially in m (or time). The smallest critical
p

N
value of a occurs for p = when cL* - . This corresponds to the spatial mode

p

.........__ _ _......__ _ _ ii _ _ i
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e•i n i / which has a wavelength of 4h. This is identified as the most unstable

mode. With p 0 0, the corresponding spatial mode e in  has wavelength 2h and

is neutrally stable for all a. Finally with a = 1, *1,2 N '

one choice of which gives the dispersion relation of the continuous problem.

We now turn to the full nonlinear difference equation (2.1) and look for

exact solutions consisting of a superposition of linear modes. These sets

of modes can be chosen by noting that each mode in the set must include its

subharmonic which appears through the quadratic, nonlinear term. The result-

ing equations for the mode amplitudes are closed and therefore their solutions

provide exact solutions of the original partial difference equation. The

various sets of modes we consider are as follows.

A. ONE MODE SOLUTION

A solution of the form
i27r n

U(m,n) = A(m)eT + (complex conjugate) (2.3)

has a wavelength of 3h and an amplitude which depends only on time. Substitu-

tion of this solution into equation (2.1) gives an ordinary difference equation

for the amplitude:

A(m+l) - A(m-l) + icv'3 A(m) = iW3/ 2 y(2-3e)A* 2(m).

This equation, for a = 0, e 2/3, contalins the result of Fornberg2 who noted

that in the continuous limit, iA behaves in time like (t0-0) . It also includes

the observation of Kreiss and Oliger4 that a spatial pattern u(m,O) - u(m,3) n 0
1 21t

with u(m,l), u(m,2) of opposite sign (that is, an eJ solution) is unstable.

To see this simply take A(m) to be pure imaginary (A(m) * ia(m)). Then (2.3)

i. i ___ii_ _ii_
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gives u(m,O) = u(m,3) = 0, u(m,1) = -u(m,2) = -va(m) where a(m+l) = a(m-l) - a2(m).

This pattern leads to unbounded growth and the choice e = 2/3 is again advisable

in order to suppress this fast acting instability.

B. TWO MODE SOLUTION

In order to investigate the nonlinear behavior of the most unstable linear

mode, we assume a solution of the form

7r
u(m,n) = A(m)e + (*) + B(m)eiwn, B e R (2.4)

and obtain the exact amplitude equations

A(m+l) - A(m-l) = -2iaA(m) - F A*(m)B(m) (2.5a)

B(m+l) - B(m-l) = - (iiy(An2 A*2(m)). (2.5b)

In order to recover the linear stability result, it is useful to include

(thinking of o as close to one) the linear (fast) time response in the expon-

ential by setting

A(m) = a(m)e , B(m) = b(m)e-i

whence (2.5) becomes

a(m+l) - 2a(m) + a(m-l) = 2(a-l)a(m) + 2 a*(m)b(m), (2.6a)
2 2 a2(m)

b(m+l) - b(m-l) = iY(a (m) a*2  (2.6b)

Note that the necessary linear stability criterion a < 1 for the scheme is

contained In (2.6). However when the nonlinear terms are included, Eq. (2.6)

can exhibit unbounded growth even when a < I provided the initial disturbance

is sufficiently large.

The amplitude equations (2.5a,b) are very revealing and deserve careful

analysis. First notice that the A.*B term which appears in the z/2 mode

(I



equation (2.5a) represents an interaction between the w mode and the w/2

mode. This is precisely the nonlinear interaction due to aliasing error

identified by Phillips (see also the discussion in Mesinger and Arakawa
6).

The result of this interaction is the production of a 3/2 mode which is

resolved by the system as contributing to the change in A*, the amplitude

connected with the -7r/2 mode. Indeed, it is precisely because of aliasing

error that an exact closure of the amplitude equations is achieved. In

Phillips' example, the equations equivalent to (2.5) would have' = 0 in (2.5a)

and no right hand side in (2.5b). In his case, he would allow a solution in

which B(m)e i m has the same sign at successive time steps. This leads to

immediate exponential growth. On the other hand, if this quantity has opposite

signs at successive m, a certain amplitude threshold is required in order to

initiate the instability. It is the latter case which our situation parallels.

Equations (2.Sa,b) also show clearing the role which the computational

mode plays in the development of finite amplitude instability. Assume that

initially the amplitudes A(m) and B(m) are small, in which case the linear

portions of (2.5a,b) will determine their growth. We then have

A(m) = Ape I mol + Ace ' " 2 a Ape "  + Ac(-l)me +im l

B(m) = B p(-)m + c

where *I and *2 a -'-I are given by the linear dispersion relation, Ap and Bp

are coefficients of the physical mode and. Ac and 8c are coefficients of the

computational mode. The linear solution given above will begin to contribute

to the right hand side of the B equation (2.5b) in the following way:

B(m+l) - 8m-i) 2 -. y(A~ 2 A*2 e2 1h" 2 2 ly A * )e21

+ . y - -
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The third term of the right hand side is a homogeneous solution and hence gives

rise to a resonant solution. We find that

B(m) = {homogeneous solutions) + ae + be"2iml - § yIm(ApAc)(-1) mm

where a, b are constant independent of m.

The nonlinear term of the right hand side of the A equation (2.5a) will now

reflect this growth in B(m):

A*(m)B(m) = e'-im{- 2 yIm(ApAc)A*m + bA* + A*B + A*B (-1)m)~pcc C p c p Cc

+ eim{- §yIm(ApAc)A~m + aA* + A*B .+ A*B (-l) m}
p p c p c p p

+ higher harmonics.

We see that A(m) is driven by terms which grow linearly in m and which involve

the computational mode of Aim) itself. This interaction triggers the fi-nite

amplitude instability. When the A*(m)B(m) term overcomes the linear (restoring)

term, rapid growth of the solution sets in. Analogous arguments could also be

carried out in the three and four mode amplitude equations also.

We compute the nonlinear stability threshold as follows. Let

u(O,n) = u(l,n) -a{(l+i)e + (*) + eirn ,
/

and with the initial conditions A(O)-z A(l) a o(l+i), B(O) = B(1) a compute

solutions for. (2.5). Note that the total amplitude is given by

E a max tu(m,n)t - 3a
Ocn<N

In Figure 1, we show the regions of the (m,E)

- __ '_.. . .. .._______
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plane which correspond to bounded.(for 2 x 104 time steps, the solution oscillates)

and unbounded (usually overflow occurs in less than 102 time steps) solutions.

The transition in the (c,E) plane from bounded to unbounded solutions is not

smooth. Given recent experience with mappings, it is not surprising that the

boundary is irregular and that the domains of attraction of the bounded and

unbounded solutions are interspersed. We stress, however, that when we examine

the stability of solutions in Section 3, we begin with initial conditions which

belong to the stable region of the amplitude equations.

In Figure la, we draw smooth curves to indicate roughly where the boundary

lies. In Figure lb, we give a more detailed picture-of the (a,E) plane in the

case of two modes (Eqs. 2.5). The dots correspond to initial values of a and

E for which the solution remains stable for 2 x 104 time steps; the crosses

indicate values for which the solutions rapidly (in less than 102 steps) blow up.

Part of this behavior is due to the fact that initial phase (which we have

chosen to be fixed) is also important in determining the final disposition of

the solution. Our choice of weighting the three modes e- n/2, eirn equally

does not significantly affect the average position of the stability boundary nor

the qualitative features of Figure lb. It does change quantitatively the compli-

cated patterns seen near the boundary and it does change the actual number of

steps needed to reach instability. We confirmed this by choosing different

weightings while keeping the "energy" /

N
E u(O,n)u(ln) * N(A(O)A*(l)+A*(O)A(l)+B(0)B(l))
nal

fixed.

The curves, in Figure 1, can be considered to be representative. It is

interesting to note that the stability boundary reaches a maximum at approximately

a .5 and then returns to E * 0 at a - 0. Recall that since we keep y fixed
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(equal to one) in these experiments, a getting smaller means that the size of

the solution U about which we perturb is getting smaller. One might argue

from (2.6a) that the smaller a is, the larger is the linear restoring force

which the nonlinearity must overcome. However this thinking is really only of

value when a is close to one and we can take the continuous time limit of (2.6).

It is better to consider Eqs. (2.5). If we write A(m) = xm + iy , B(m) = bm,

then (2.5a) reads for a = 0, y = 1,

Xm+ 1  Xm_ 1  y bmYm

2

Ym+l = Ym- " bmXm

which if x0=Y'O Xl=y1 allows the solution xm-ym for all m thus

bn+l - bml + 2

IT XM

and therefore always increases. This result is not significantly affected by a

change of initial conditions. For example, if the energy is redistributed in

a different manner among xox l ,y O,y l ,b 0 ,b I the stability threshold at a = 0 can

increase to as much as + .05. Thus the role of m, for m small, is to dephase

xm and Ym which inhibits the monotonic growth of bm-

Similar comments apply to the other stability curves of Figure 1, which

are calculated by solving the initial vaue problem for the ordinary difference

equation (2.7), (2.9) describing three and four mode behavior respectively.

The reason that the stability boundary for the three mode solution touches E - 0

at a I 1 is that, at this value of a, the solution A(m) - exp(-2wim)/3,

B(m) * exp(-irim), corresponding to the undistorted travelling wave, exactly

cancels the linear terms In the equation. Thus the nonlinearity has no linear

res-toring force to overcome.

,ii-
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C. THREE MODE SOLUTION

The T (period 3) mode can also appear as a solution with the w (period 2)

and . (period 6) modes. A solution of the form

u(m,n) = A(m)e + B(m)e + C(m)e i"n + (*) (2.7)

is an exact solution of the full partial difference equations provided the

amplitudes satisfy

A(m+l) - A(m-l) + 2iY (A*B + B*(C+C*))m + iav7 A(m) = 0

B(m+l) - B(m-1) + i (2A2 + A*(C+C*))m + iWy 8(m) = 0

C(m+l) - C(m-l) + i2y A(m)B(m) - 0 . (2.8)

Once again a stability curve relating c to the critical value of the initial

amplitude has been determined experimentally. This curve is also shown in

Figure la, for the case A(0) = A(l) = B(O) - B(l) = c(l+i), C(O) = C(l) = 0.

Now E = max Iu(m,n)I = 5a.
O<n<N

D. FOUR MODE SOLUTION

An exact solution to the full partial difference equations consisting of
/

four linear modes takes the form

u(m,n) - A(m)ei n + B(m)e i _ + C(m)e + D(m)eiin + () (2.9)

The amplitudes must satisfy the ordinary difference equations

!2A(m+l) - A(m-l) + iyY + 4A*B + 42* + 'C*D~m + %4 '2A(m) =0

B(M+l) - B(M-1) + [ 1 2 + ZA A*C 2 B* + ]I 2-)C*2 3 + 2lcB(m) -0

i i i Y II I C D..
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C(m+l) - C(m-1) iyrT A*D + (T + 4) AB + j(,7 - 2 )B*C*jm + ici"tC(m) - 0

D(m+l) - D(m-l) + iy 2 v'7 AC + B ) 0. (2.10)
m

The stability curve determined from these amplitude equations is also shown in

Figure la for the case A(O) = A(l) = B(O) = B(l) = C(O) = C(l) = a(l+i),

D(O) - D(l) = a. Now E = max u(m,n) = 7o.
O<n<N

III. FOCUSING IN THE PARTIAL DIFFERENCE EQUATIONS'

The calculations of the previous section provide the regions of stability

for exact solutions to the full partial difference equations. However, these

stability curves were determined not from the full partial difference equations,

but rather from a set of ordinary difference equations that govern the amplitudes

of various Fourier modes. We now return to the partial difference equations

for a numerical experiment that can be thought of as a verification of the

stability results of the previous section. In all cases we will begin from

initial conditions which give rise to stable solutions of the ordinary difference

equations (2.5) and (2.8).

Consider the specific case of the exact three mode solution

u(m,n) = A(m)e I n + B(m)e V + C(m)eiwn + (*).

According to the stability curve of Figure 1, a value of z = .9 and an initial

amplitude of E - .1 should produce a stable solution of the amplitude equations.

Yet when the partial difference equations are solved with a • .9 and E = .1,

something unexpected happens. The results of this calculation are shown in

Figure 2. With N=300 grid points on the interval 0 < x < 1, the solution is

plotted at time steps m * 400, 1000, 2000, 2200, 2400, 2680. The dashed

-_
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lines indicate the critical amplitude at which finite amplitude instability

sets in according to the stability curve of Figure 1. (In this case the criti-

cal amplitude is about .2). Clearly, the initial amplitude in this case is

subcritical. At m = 400 and m = 1000 (Figure 2a,b), the solution still retains

the periodic structure of the initial conditions; its amplitude is well below

critical everywhere. By m = 2000 (Figure 2c), the constant envelope of the

initial profile begins to vary slowly in x. The solution remains well-contained

through m = 2400 (Figure 2e) although local amplitudes have exceeded their

initial value. At m 2680 (Figure 2f) the solution exceeds the threshold

value at a single grid point. This completes the first stage of the develop-

ment of the instability. It is characterized by the slow gathering or focusing

of the solution locally. Once the solution reaches the critical threshold at

even a single grid point, the second stage of the development takes place

swiftly. By m = 2700, finite amplitude instability, as predicted by the ampli-

tude equations, has taken over and the solution grows without bound. During

the integration, the two quantities E u(m,n) and E u(m+l,n)u(m,n) are conserved
n n

exactly.

Some understanding of this process may be gained by looking at the Fourier

spectrum of the solution .at the same time steps shown in Figure 2. On a grid of

N a 300 points there are 150 distinct modes with mode j of the form

e having wavelength of ( ph. After m = 1000 time steps (Figure 3a) the

energy is still in the three modes of the initial conditions. By m = 2000 time

steps (Figure 3b) the energy has spread to the sidebands with wave numbers

• 45,55, - 95,105 and p a 145 (p - 50 is the period 6 or i mode). This

corresponds to an envelope modulation of wavelength - 60 and the constant

envelope of the initial profile begins to vary slowly in x. In short, the

exact solutions of the amplitude equations are unstable solutions of the full
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partial difference equations. This is the beginning of the focusing process.

The slow modulation of the envelope is triggered only by the presence of errors

'her in the initial conditions or in computation. Figure 3c at m =2200 time

steps shows a further spreading of the energy in wave number space corresponding

to a continued enhancement of the modulation in the envelope. During time steps

m > 2400 (Figure 3d) the energy is distributed through all wave numbers approach-

ing a uniform distribution. In physical space this corresponds to the envelope

of the solution having focused into a local peak with subcritical amplitude.

Once focusing elevates the maximum amplitude above the threshold,, finite ampli-

tude instability sets in, leading to a rapid deterioration of the solution.

We point out again that the initial conditions for this experiment corre-

spond to an exact and bounded solution of the full partial difference equations.

The focusing mechanism feeds on errors in the calculations and magnifies them

at a level which is subcritical even for finite amplitude (nonlinear) instability.

The effect of focusing can be accelerated by adding small perturbations to the

initial conditions. It can be delayed by doing the calculation in higher

precision.

Figures4 show another sequence of experimental results. We choose initial

conditions consisting of the iw/2 and 7r modes and N, the number of

grid points, is 300. With a~ = .9, the critical amplitude (by Figure 1) is

Eca 0.36 and is marked by a dashed line f'n the figures. For these calculations,

an initial amplitude of E = .15 was chosen. For early times the envelope

oscillates in a manner almost independent of x and in precise agreement with the

motion predicted by Eqs. (2.5a,b). One can think of the system as-consisting

of a chain of coupled oscillators in a nonlinear potential. For early times,

their orbits are almost synchronized. However, a careful analysis of the
t

spectrum reveals that the envelope has begun to deform and one can alreadyse
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the long wave modulation at times m = 100, 400 (Figures 4a,b). The spectral

decompositions of u(100,n) (Figure 5b) shows that the sidebands k = 72, 78

(k = 75 is the period 4 or ir/2 mode) are excited. This corresponds to an

envelope modulation of wavelength 300/3 = 100. This wavelength is chosen

dynamically, is a function of the initial amplitude but is not a function of N,

the number of grid points. This fact was verified by taking values of N

ranging from 60 to 600. The fact that there is a most unstable sideband and

that the wavelength of the most unstable mode is inversely proportional to

the initial amplitude is consistent with parallel theories of modulation insta-

bilities.8'11  Returning to the experiment shown in Figures 4, we note that by

m = 400, the deformation of the envelope into a wave of wavelength 100 is

clear to the eye although by this step some energy has also been transferred

to the sidebands k = 71 and 79 (Figure 5c). By m = 800 (Figure 4e), the envel-

ope has deformed so that in several locations, it is about to exceed the critical

threshold. Within fifty more time steps (Figure 4f), the solution becomes

rapidly unbounded. Note that the maximum negative peak (Figures 4e, 4f) travels

with a speed of almost one consistent with the envelope description discussed

in the next section.

An important question is whether the behavior observed in these two experi-

ments is inherent in the difference equations themselves or whether it can be

attributed to finite precision arithmetics To address this question, the growth

rate of the instability was measured for various cases in both single and double

precision. One measure of growth rate was obtained by monitoring the quantity

e,(m) - max lu(m,n) - '(m,n)l

l<n<N

where u is the solution of the full partial difference equation and u is the

solution of the partial difference equation as reconstructed from the solution

of the amplitude equations. The quantity e1 measures the deviation of the
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exact solution (u) from the destabilized solution (u) (assuming the same initial

conditions) and thus gives an indication of the rate at which the instability

is developing. Figures 6a and 6b show plots of m vs. eI(m) for a single and

double precision calculation on a grid of N = 240 with two mode (.7r) initial

conditions. The average growth rates, as determined from each curve's interval

of uniform growth, are essentially identical. A similar run with N = 300 in

single and double precision also yields the same growth rate. A second quantity

e2(m) = max {max u(m,n)) - min{max u(m,n)}

n n

measures the rate at which the amplitude of the envelope modulation grows. When

this quantity is monitored, a growth rate is obtained which not only agrees in

single and double precision, but also agrees with the growth rate obtained from

e. It seems reasonable to conclude that the mechanism which is responsible for

focusing resides in the difference equations and is not an artifact of finite

precision arithmetic.

IV. ENVELOPE DESCRIPTION

Since the instability which leads to focusing involves wave numbers in the

immediate neighborhood of the primary modes, it is natural to seek an envelope

description of the process. We carry out this analysis for the situation in

which the energy is initially in the f/2/and 7r modes. In (2.6) let the ampli-

tudes a(m,n), b(m,n) be slowly varying functions of both the time and space

variable. When substituted into the full partial difference equations (2.1) the

following envelope equations for the amplitudes are obtained.

[a(m+l,n) - 2a(m,n) + a(m-l,n)] - [a(m,n+l) - 2a(m,n) + a(m,n-l)]

2(c-l)a(m,n) + 2 Y a*(m,n)b(m,n) (4.1a)
*2

b(m+l,n) - b(m-l,n) + b(m,n+l) - b(m,n-l) - + 2- a2(mn) - a*2(mn)). (4.1b)T41b
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The approximation used in obtaining these equations are valid provided that

the spatial gradient a(m,n+l) - a(m,n-l) of a(m,n) is small with respect to

the amplitude a(m,n) itself. The advantage of Eqs. (4.1) is that they are

universal and will apply to a broad class of partial difference equations. In addition

the envelope Eqs. (4.1) are a better representation of the full partial diff-

erence Eqs. (2.1) than the amplitude Eqs. (2.6). Certainly they contain the

amplitude equations. Also they are a valid approximation to the full partial

difference equations at least for early times as, in the initial steps of

growth of the envelope instability, the criterion that a(m,n+l) - a(m,n-l) is

small with respect to a(m,n) is well satisfied.

In Figure 7, we show the result of comparing u(m,n)- as calculated from

(2.1) and as constructed from a solution of the envelope Eqs. (4.1). The

initial conditions consist of the n/2 and w modes only with an amplitude E = .15

modulated by a long wave perturbation with an amplitude of .05E. The parameter

values a = .9 and N = 60 grid points were used. For m < 200 (Figures 7a,b) the

two computations produce identical results. When m > 300 (Figure 7c) the approx-

imations used to derive the envelope equations cease to be valid. For example,

a universal term, such as 2a*(m,n)b(m,n), no longer represents

a*(m,n+l)b(m,n+l) + a*(m,n-.)b(m,n-l), a term which is peculiar to the particular

partial difference equation under study. Nevertheless the envelope equations

do exhibit the focusing property and display qualitatively similar behavior to

the full difference equations even though, in this computation, the critical

threshold is reached much sooner (at m a 650) by the envelope equations. The

full difference equations exhibit focusing behavior which reaches the critical

threshold at about m = 1800 time steps.

I ... .
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V. CONCLUSIONS AND CONJECTURES

The results of the previous sections were obtained in a purely experimental

way. These experiments provide evidence for the presence of a universal mechanism

for instability in certain nonlinear difference schemes. We have considered

the Leapfrog scheme which has

(i) potentially unstable modes which are neutral by linear stability

analysis,

(ii) a subcritical amplitude threshold governing the onset of finite

amplitude instability, and

(iii) the focusing property.

We believe that any difference scheme possessing these properties will be sus-

ceptible to instability through this mechanism. Of these three-properties, the

focusing mechanism is the most difficult to predict. One necessary criterion

for focusing is that the envelope equations (4.1.) possess n-independent solutions

which are always unstable. Although certainly accessible, an analytic result

to this effect has not been proved, but, to date, experimental evidence strongly

suggests that this instability is always present. A second, more difficult,

question is whether the focusing envelope always attains the critical threshold.

In order to gain some insight into this question, we plot, in Figures 8 and 9,

the number of time steps needed for the critical threshold to be reached (M) as

a function of the number of spatial grid points.(N). The different curves are

parameterized by E, the amplitude of the solution from which the envelope starts

to deform. Figure 8 refers to the case of two mode (w/2,r) initial conditions

in which, with a a .9, the critical amplitude is Ec M .36. Figure 9 refers to

the case of three mode (/3, 2w/3, w) initial conditions in which, with a- .9,

the critical amplitude is Ec - .15. These results also exhibit some interesting

features.



-22-

Mi The closer E is to its critical value Ecs the larger is the range

for which M is independent on N. The fact that these curves asymptote at non-

zero values of M reflects the fact that the time for the perturbation to reach

an amplitude of E c - E depends on the size of the initial fluctuations and

the growth rate of the envelope instability.

(ii) The smaller E is, the larger N must be in order for the envelope to

attain the critical threshold. From the data on Figure 9, we plot in Figure 10,

MAE vs. in(LnN) for fixed M, the number of time steps needed for the envelope

to attain the critical threshold. The straight lines indicate that ELAN is

constant for fixed M and furthermore we note that even then EUnN is only weakly

dependent on M. Thus it is not simply the amplitude which determines the

ultimate fate of- the solution. Rather, the critical parameter appears to be a

global quantity which measures a weighted average of the original perturbations.

It should be pointed out once again that these results are sensitive to the

choice of initial conditions. Figures 8-10 show the situation in which all

components of all modes are given equal weight in the initial conditions. It is

expected that a different weighting would give qualitatively similar, but quanti-

tatively different pictures. Since in a typical calculation initial errors are

distributed fairly randomly, it would be difficult to use the curves of Figures

8-10 to predict the number of steps needed to reach the threshold.

This raises the question of how instability due to focusing can be avoided.

In Section 2 an argument was given to show the role of the computational moder in

the onset of finite amplitude instability. 'It appears that the presence of

spurious, neutral modes also contributes to the focusing mechanism. A number of

strategies have been developed to eliminate the computational mode from calcula-

tions that use non-dissipative schemes. Among these strategies we tested the

following and reached some conclusions.

(M Averaging the solution on two consecutive time levels at regular
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intervals effectively eliminates the development of envelope insta-.

bility and keeps the solution intact for any number of time steps.

However, averaging amounts to a non-physical "time" step and, not

surprisingly, the conservation of quantities such as M and E is badly

viol ated.

(ii) Periodic restarts or insertion of a step with a two level scheme

also appears to suppress the focusing mechanism, but has a negligible

effect on the conserved quantities. To show the effectiveness of

this strategy the case of Figure 4 was run again, this time with

a two-level Matsuno step inserted every 200 time steps. After 420

time steps, when the original (non-restarted- solution was showing

noticeable modulation of the envelope, the restarted solution still

shows a uniform envelope over a perfectly periodic wave. After 880

time steps after the original solution has become unbounded, the

restarted solution still has a uniform envelope.

In this case with a forward time step taken every 200 time steps, any

growth that has begun in the envelope is small enough that it can be

eliminated by the damping in one Matsuno step. On t he other hand,

if a forward step is taken less frequently, then the buckling and

growth of the envelope has enough time to develop and one Matsuno

step will not restore the uniform envelope. This latter situation

is illustrated in Figures 11. The first figure shows a well-developed

envelope wave over a grid of N *300 after m u 853 time steps.

Figure llb shows the solution one step after a Matsuno step. The

effect of the forward step is to reduce the amplitude of the solution

uniformly over the grid. One local peak which has reached the
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critical threshold has been reduced to about 75% of its value.

It is difficult to determine how much of that reduction is due

to the damping of the Matsuno step. Some portion of it is due to

the inherent oscillation of the envelope. A careful look at the

spectrum shows that the energy has been reduced fairly uniformly

across all the modes in contrast to the linear case in which the

damping is strongest for the high wavenumbers. This particular

integration which would have terminated a few steps after m = 855

without the forward step continues for several hundred additional

steps.

It would be useful to derive a rough prescription for the frequency

with which forward steps should be inserted. There are some assump-

tions in such a calculation which may mitigate its usefulness as a

general result, but it does show that damping and envelope growth

can be made to compensate each other in an effective way. The growth

rate of the focusing instability can be estimated either from Figures

6 or from the flat portions (N > 200) of the curves in Figure 8. At

the same time a linear analysis gives the amount of damping associated

with one Matsuno step. For example, the most highly damped mode

(w/2 mode) is damped by a factor of .92 when a - .9. Assuming a con-
I

stant exponential growth of the envelope, it is possible to determine

how often a forward step should be inserted to exactly cancel the

growth of the envelope. With N 300, such a calculation yields a

frequency of 400 time steps which agrees well with empirically deter-

mined strategies. This calculation is certainly oversimplified. The

growth rate is not uniform and is somewhat amplitude dependent. Further-

more, the linear estimate of the damping factor is not exactly correct,

especially.In the later stages of the computation. Nevertheless, the

______________________I__I
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the argument does explain qualitatively the success of a forward

step in inhibiting the instability.

(iii) For smooth solutions, periodic filtering on high wave numbers has

been used successfully to suppress instability. This has not been

tried in the present one-dimensional runs (in which the solutions

are far from smooth). We would expect filtering to be effective

in supressing focusing which feeds preferentially on the high wave

numbers. At the same time filtering could have an undesirable

effect on the budget of conserved quantities.

The qualitative similarity between all of the features reported above and the

properties of focusing envelopes of partial differential equations leads us to

conjecture that the strength of the focusing mechanism-increases with the

dimension of the problem. Indeed, preliminary calculations with analogous two-

dimensional equations have borne out this conclusion. We expect that this two

step instability process will be potentially present in all large scale computa-

tions, Our goal, in this and future work, is to understand the nature of the

breakdown of numerical algorithms to the pGint that we can (a) appreciate why

certain ad hoc instability inhibitors (such as filtering and the introduction of

artificial viscosity) work and (b) to devise new and more enlightened ways to

control instabilities without sacrificing accuracy.
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FIGURE CAPTIONS

la. Stability curves in (cz,E) plane as determined from amplitude equations:

2. Two mode solution (7r/2, n). 3. Three mode solution (w/3, 2w/3, w).

4. Four mode solution (w/4, ir/2, 37r/4, ir).

lb. Enlargement of (G,E) parameter plane for two mode solution.

• Stable solution to 2 x 104 time steps. X Unstable solution.

2a-f. Solution to the partial difference equations: 3 modes, N-300, a-.9, E-.l,

m=400, 1000, 2000, 2200, 2400, 2680.

3a-d. Spectral resolution of u(1000,n), u(2000,n), u(2Z00,n), u(2400,n), of

Figure 2.

4a-f. Solution to partial difference equations: 2 modes, N=300, a=.9, E=.15,

m-lO0, m=400, m-450, m-500, m-800, m=850.

5a-f. Spectral resolution of solutions of Figure 4 at m-0, 100, 400, 450, 500, 550.

6a,b. 6. owth rate curves. Single and double precision, N=240..

7a-c. Solution of partial difference equations (.) and envelope equations (*).

2 modes, N=60, a=.9, E-.15, m100, 200, 300.

8. Number of grid points (N) vs. number of time steps to critical threshold (M):

2 modes,= a-.9, various E-(l).3, (2).27, (3).21, (4).18, (5).15.

9. Number of grid points (N) vs. number of time steps to critical threshold (M):

3 modes, a=.9, various E=(l).14, (2).12, (3).1, (4).09, (5).106, (6).05.

10. £n(EnN) vs. xn(E), a-.9, 3 modes for M - 2000, 3000, 6000.

lla,b. The effect of one Matsuno step. N300, c-.9, w-853, 855.
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Figure 3. Spectral resolution of solution of Figure 2.

(a) m-1000 (b) m-2000. (c) wn2200 (d) m-2400
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Figure 4. Solution of partial difference equations

2 Modes, N-300, aw.9, Em.l5

(a)mziloo (b) m400 (c) m450 (d) mx5OO (e) m-800 (f) m-850
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Figure 5. Spectral resolution of solution of Figure 4..
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Some numerical studies are reported of solutions of the sneGordon equation with damping and a mixture of two types
of driving forte: a constant (dc) force and a spatially inhomogeneous force varying luumonically (ac) in tiue. For some
mnes of parameters the excitation of kink-antikink pais is chaoti

Recently there has been a considerable interest in where F(x, t) represents a general driving term.
the occurrence of chaotic states in deterministic sys- Without damping (a - 0) and driving terms, eq. (2)
tems (c . ref. (1] ) In particular, the appearance of un- is the well known sine-Gordon (SG) equation (c.f. ref.
usually high noise-temperatures in Josephson param- [4]). The fundamental nonlinear normal modes of the
etric amplifiers has been ascried to transitions from SG equation are the ldnk/antikink (±) and breather
coherent to chaotic states of the underlying dynami- or bion (0b) solutions
cal system , 4 tan- {exp T(x -X0 - Ut)

e + a0' + sin 0 - na cs (wact) (I)- a[ x(
and

This is also the equation of motion for a damped pen.
dulum with an applied torque varying harmonically in b 4 tan-1 [(l/co2-1)1l2sin lsech R], (4)
time. Analog computer simulations by Huberman et where 01 _ oyb [t - u (x - x0)], # (1 - CO-)1/2
al. [21, and digital computer calculations and electronic X (x -x 0 - ut), and y - (1 - u2)"- /2 , u being the

. . experiments by Pedersen and Davidson [3], have shown velocity. The parameter cab determines the internal
that eq. (1) exhlbits chaotic behaviour for certain oscillation frequency of the breather. The energy car.
ranges of parameter values, tied by the kink/antikink and the breather are

In this letter we report a preliminary investigation E. _ 87, Eb _ . 2P

of the effect of adding a spatial dependence of to E 2E (1 - ,,.Io (5)
eq. (1), Le. instead of a Josephson point-diode or a respectively. These solutions contrast with the small-
single pendulun, we consider a long Josephson junc- amplitude harmonic (iner-phonon or plasmon) solu.
tion or an array of coupled pendulums. The equation tions (x, t) cc Re { exp[ i(kx - ckt)]} with the dis-
of motion in suitably normalized units is persion relation wl - 1 + k2 . It is well known that the

breather can be considered as a bound state kink-anti-
k(2) kink pair, where the energy goes to zero as wb I- and

0 031-9163/8110000-0000/S 02.75 0 1981 North-Holland
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approaches 2E, as cib O. For w b -1 (small ampli- investigate the chaotic nature (or otherwise) of the re-
tude) the breather can be viewed as a coherent spatial- sults, we calculated a power spectrum obtained as the
ly confined excitation of linear plasmons. Although autocorrelation function of 0, (20, t) computed by the
there is no clear distinction between a linear localized fast fourier transform using 214 values of 0t(20, t).
plasmon and a nonlinear breather, we shall below use The time series 0. (20, t) was shaped with a cosine bell
the term plasmon in a loose sense to mean a low ener- window in order to reduce frequency components in-
gy breather. troduced by truncation.

It is important to note that there is no threshold Initially we used the following driving force
energy required for breather creation, in contrast to F(xt)0, <X<5,the creation of a kink or antikink. This suggests that a Fx')O0 x l,

relatively small spatially inhomogeneous driving force
tuned to unit frequency will be successful in exciting = 1?c cos t, 15 <x <25, (6)
a low energy breather mode. An obvious conjecture is
that such a driving force will continue to feed energy -0, 25 x 40.
into the breather until it eventually breaks up into a In fig. I we show O(x, t) for the case tlc = 0.5, and
klnk-antikink pair. Numerical experiments support a = 0.01 for 0 < t < 130. Initially plasmons are creat-
this hypothesis, and also suggest that the time evolu- ed, but at t - 100 a breather is formed which eventual-
tion of this scenario is chaotic in nature. ly squires enough energy to break up into a kink-

We used the finite difference scheme of Ablowitz antikink pair. Further calculations, not shown in the
et aL [5] to integrate eq. (2), with step size Ax - At diagram, reveal that this process continues in an aperi-
=0.05. As initial conditions we took O(x, 0) - 0 and odic manner. In fig. 2 we show the power spectrum
O,(x,O) -0 throughout. Atx -0,40 we used linear S(w) obtained for the time interval 50 < t < 5000. A
outflow boundary conditions, 0 O -0. In order to broad band noise level Is seen, characterizing the cha-

............ ....... ....

................... .....

li 1. Numemil olution of eq. (2) ad eq. (6) wlith e=0J, a -0.01, hown at disacrete tiam,0 < t < 130, tme mnnalm up-
wars

2
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00 2

*Fig. 2. Power spectrumnS(w), for thecase na - .S,a 00.01, Fig. 3. Power VwtuiS(w), for the cma rrw a-0.01, a 0.01,
showing the 1956 lowest frequencies. showing the 195 6 lowest frequencies.

otic nature of the process. For comparison, the power the pendulum chain will force a breather to break up
spectrum of a nonchaotic case obtained for %c~ - 0.0 1, into a kink-antilduk pair. The final velocity of the
and a - 0.01 is shown in fig. 3. We find no creation of kink and antikink is determined as a balance between
high energy breathers in this case, and only a slight the loss and the driving force. Thus we expect the addi-
broadening (60 dB below) around the driving frequen- tion of a constant force in eq. (6) to enhance the break-
cy is observed. For ,~0.1 the background noise be- up of breathers and to accelerate the movemnent of the
gins to ri.kink-antildnk pairs from the central driven region.

A constant (in space and time) applied torque on We carried out calculations with the following form

F16.4. Nuseedce solution of eq. (2)snd eq. (7)with qd4  0.3. 1%e.03, a 0.01. shwat Uiscretties,0 < t < 130, time
frmte upwards.

3
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F%.5. Plot of" o(20, t) versuso(20, t) for the cas =0. 3,isc 0.5, And a -0.01 forO t C :310.

of F(x, r) This work was started at the Schloss Elnmau meeting

F(x, t) = 0 <x 4 15, in 1981, and two of us (JCE and ACN) are grateful to
Professor Dr. H. Haken for his hospitality, and to

a i + i, cosr, 15 <x < 25, (7) Professor BA. Huberman for interesting discussions.
Further work was done while PSL was at Heriot-Watt

* i4, 25 < 4 University during a visit supported by the Danish Coun-
cil for Scientific and Technical Research. One of us

The result for i dc = 0.3, 71a, - 0.5, and a = 0.01 is (JCE) is grateful for computational support from the
shown in fig. 4 for 0 < t < 130. As before, we find SRC Interactive Computing Facility, and another
plasmons being created, but now three breather and (ACN) was supported by US Army Contract DAAG29-
kink-antikink pairs are found, supporting the enhance- 78-G-0059, ONR Contract N00014-76-C.0867 and
ment conjecture above. The power spectrum is qualita- NSF Grant MCS7507S48 AO L.
tively similar to that of fig. 2. In fig. 5 we show 0,( 20, t)
versus 0(20, t) for 0 < t < 310. The chaotic nature of References
the process is clearly seen - the creation of plasmons
is accompanied by successive 21 jumps in a random [11 H. Haken, ed. Chaos and order in nature (Spriner, Berlin,
way. 1981).

In conclusion, we have shown that kink-antiink [21 BA. Hubermue, J.?. Cutchfleld and N.H. Packawd, AppL
pairs of the damped SG equation are created in a cha. Phy Lett. 37 (1980) 750.
otic way by the introduction of a spatially inhomoge- 131 NPJ. Pedersen and A. Davidson, Chaos and noise rise in

Josmphson junctions, IBM TJ. Watson Research Center
neous time-harmonic driving term. Induding further a Report (7/8/8 1) submitted for publication.
constant driving term tends to accelerate the process. (41 PJ. Caudrey, J.C. ENb& and J.D. Gibbon, Nuovo
Because the excitation energy of breathers is near zero, Cimento 25B (1975) 497.
we find the iramition to chaos for a lower magnitude 15 1 M.J. Abiowitz, M.D. Kruikal and .F. Ladlk, SIAM J.
of driving force thin in the case of a spatially indepen- Appl. Math. 36 (1979) 428.

dent mrdel such as eq. (1). However we have not yet
attempted a detailed study of the parameter space
such as that carried out in [4,51.
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